scholarly journals Effect of pressure-controlled ventilation-volume guaranteed mode combined with individualized positive end-expiratory pressure on respiratory mechanics, oxygenation and lung injury in patients undergoing laparoscopic surgery in Trendelenburg position

Author(s):  
Jianli Li ◽  
Saixian Ma ◽  
Xiujie Chang ◽  
Songxu Ju ◽  
Meng Zhang ◽  
...  

AbstractThe study aimed to investigate the efficacy of PCV-VG combined with individual PEEP during laparoscopic surgery in the Trendelenburg position. 120 patients were randomly divided into four groups: VF group (VCV plus 5cmH2O PEEP), PF group (PCV-VG plus 5cmH2O PEEP), VI group (VCV plus individual PEEP), and PI group (PCV-VG plus individual PEEP). Pmean, Ppeak, Cdyn, PaO2/FiO2, VD/VT, A-aDO2 and Qs/Qt were recorded at T1 (15 min after the induction of anesthesia), T2 (60 min after pneumoperitoneum), and T3 (5 min at the end of anesthesia). The CC16 and IL-6 were measured at T1 and T3. Our results showed that the Pmean was increased in VI and PI group, and the Ppeak was lower in PI group at T2. At T2 and T3, the Cdyn of PI group was higher than that in other groups, and PaO2/FiO2 was increased in PI group compared with VF and VI group. At T2 and T3, A-aDO2 of PI and PF group was reduced than that in other groups. The Qs/Qt was decreased in PI group compared with VF and VI group at T2 and T3. At T2, VD/VT in PI group was decreased than other groups. At T3, the concentration of CC16 in PI group was lower compared with other groups, and IL-6 level of PI group was decreased than that in VF and VI group. In conclusion, the patients who underwent laparoscopic surgery, PCV-VG combined with individual PEEP produced favorable lung mechanics and oxygenation, and thus reducing inflammatory response and lung injury.Clinical Trial registry: chictr.org. identifier: ChiCTR-2100044928

2019 ◽  
Vol 131 (1) ◽  
pp. 58-73 ◽  
Author(s):  
Domenico Luca Grieco ◽  
Gian Marco Anzellotti ◽  
Andrea Russo ◽  
Filippo Bongiovanni ◽  
Barbara Costantini ◽  
...  

AbstractEditor’s PerspectiveWhat We Already Know about This TopicWhat This Article Tells Us That Is NewBackgroundAirway closure causes lack of communication between proximal airways and alveoli, making tidal inflation start only after a critical airway opening pressure is overcome. The authors conducted a matched cohort study to report the existence of this phenomenon among obese patients undergoing general anesthesia.MethodsWithin the procedures of a clinical trial during gynecological surgery, obese patients underwent respiratory/lung mechanics and lung volume assessment both before and after pneumoperitoneum, in the supine and Trendelenburg positions, respectively. Among patients included in this study, those exhibiting airway closure were compared to a control group of subjects enrolled in the same trial and matched in 1:1 ratio according to body mass index.ResultsEleven of 50 patients (22%) showed airway closure after intubation, with a median (interquartile range) airway opening pressure of 9 cm H2O (6 to 12). With pneumoperitoneum, airway opening pressure increased up to 21 cm H2O (19 to 28) and end-expiratory lung volume remained unchanged (1,294 ml [1,154 to 1,363] vs. 1,160 ml [1,118 to 1,256], P = 0.155), because end-expiratory alveolar pressure increased consistently with airway opening pressure and counterbalanced pneumoperitoneum-induced increases in end-expiratory esophageal pressure (16 cm H2O [15 to 19] vs. 27 cm H2O [23 to 30], P = 0.005). Conversely, matched control subjects experienced a statistically significant greater reduction in end-expiratory lung volume due to pneumoperitoneum (1,113 ml [1,040 to 1,577] vs. 1,000 ml [821 to 1,061], P = 0.006). With airway closure, static/dynamic mechanics failed to measure actual lung/respiratory mechanics. When patients with airway closure underwent pressure-controlled ventilation, no tidal volume was inflated until inspiratory pressure overcame airway opening pressure.ConclusionsIn obese patients, complete airway closure is frequent during anesthesia and is worsened by Trendelenburg pneumoperitoneum, which increases airway opening pressure and alveolar pressure: besides preventing alveolar derecruitment, this yields misinterpretation of respiratory mechanics and generates a pressure threshold to inflate the lung that can reach high values, spreading concerns on the safety of pressure-controlled modes in this setting.


2020 ◽  
Vol 133 (4) ◽  
pp. 750-763 ◽  
Author(s):  
William G. Tharp ◽  
Serena Murphy ◽  
Max W. Breidenstein ◽  
Collin Love ◽  
Alisha Booms ◽  
...  

Background Body habitus, pneumoperitoneum, and Trendelenburg positioning may each independently impair lung mechanics during robotic laparoscopic surgery. This study hypothesized that increasing body mass index is associated with more mechanical strain and alveolar collapse, and these impairments are exacerbated by pneumoperitoneum and Trendelenburg positioning. Methods This cross-sectional study measured respiratory flow, airway pressures, and esophageal pressures in 91 subjects with body mass index ranging from 18.3 to 60.6 kg/m2. Pulmonary mechanics were quantified at four stages: (1) supine and level after intubation, (2) with pneumoperitoneum, (3) in Trendelenburg docked with the surgical robot, and (4) level without pneumoperitoneum. Subjects were stratified into five body mass index categories (less than 25, 25 to 29.9, 30 to 34.9, 35 to 39.9, and 40 or higher), and respiratory mechanics were compared over surgical stages using generalized estimating equations. The optimal positive end-expiratory pressure settings needed to achieve positive end-expiratory transpulmonary pressures were calculated. Results At baseline, transpulmonary driving pressures increased in each body mass index category (1.9 ± 0.5 cm H2O; mean difference ± SD; P < 0.006), and subjects with a body mass index of 40 or higher had decreased mean end-expiratory transpulmonary pressures compared with those with body mass index of less than 25 (–7.5 ± 6.3 vs. –1.3 ± 3.4 cm H2O; P < 0.001). Pneumoperitoneum and Trendelenburg each further elevated transpulmonary driving pressures (2.8 ± 0.7 and 4.7 ± 1.0 cm H2O, respectively; P < 0.001) and depressed end-expiratory transpulmonary pressures (–3.4 ± 1.3 and –4.5 ± 1.5 cm H2O, respectively; P < 0.001) compared with baseline. Optimal positive end-expiratory pressure was greater than set positive end-expiratory pressure in 79% of subjects at baseline, 88% with pneumoperitoneum, 95% in Trendelenburg, and ranged from 0 to 36.6 cm H2O depending on body mass index and surgical stage. Conclusions Increasing body mass index induces significant alterations in lung mechanics during robotic laparoscopic surgery, but there is a wide range in the degree of impairment. Positive end-expiratory pressure settings may need individualization based on body mass index and surgical conditions. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2021 ◽  
Vol 11 ◽  
Author(s):  
Andre Dos Santos Rocha ◽  
Roberta Südy ◽  
Davide Bizzotto ◽  
Miklos Kassai ◽  
Tania Carvalho ◽  
...  

IntroductionThe advantages of physiologically variable ventilation (PVV) based on a spontaneous breathing pattern have been demonstrated in several respiratory conditions. However, its potential benefits in chronic obstructive pulmonary disease (COPD) have not yet been characterized. We used an experimental model of COPD to compare respiratory function outcomes after 6 h of PVV versus conventional pressure-controlled ventilation (PCV).Materials and MethodsRabbits received nebulized elastase and lipopolysaccharide throughout 4 weeks. After 30 days, animals were anesthetized, tracheotomized, and randomized to receive 6 h of physiologically variable (n = 8) or conventional PCV (n = 7). Blood gases, respiratory mechanics, and chest fluoroscopy were assessed hourly.ResultsAfter 6 h of ventilation, animals receiving variable ventilation demonstrated significantly higher oxygenation index (PaO2/FiO2 441 ± 37 (mean ± standard deviation) versus 354 ± 61 mmHg, p < 0.001) and lower respiratory elastance (359 ± 36 versus 463 ± 81 cmH2O/L, p < 0.01) than animals receiving PCV. Animals ventilated with the variable mode also presented less lung derecruitment (decrease in lung aerated area, –3.4 ± 9.9 versus –17.9 ± 6.7%, p < 0.01) and intrapulmonary shunt fraction (9.6 ± 4.1 versus 17.0 ± 5.8%, p < 0.01).ConclusionPVV applied to a model of COPD improved oxygenation, respiratory mechanics, lung aeration, and intrapulmonary shunt fraction compared to conventional ventilation. A reduction in alveolar derecruitment and lung tissue stress leading to better aeration and gas exchange may explain the benefits of PVV.


Sign in / Sign up

Export Citation Format

Share Document