scholarly journals Asymptotic Dynamics of Young Differential Equations

Author(s):  
Luu Hoang Duc ◽  
Phan Thanh Hong

AbstractWe provide a unified analytic approach to study the asymptotic dynamics of Young differential equations, using the framework of random dynamical systems and random attractors. Our method helps to generalize recent results (Duc et al. in J Differ Equ 264:1119–1145, 2018, SIAM J Control Optim 57(4):3046–3071, 2019; Garrido-Atienza et al. in Int J Bifurc Chaos 20(9):2761–2782, 2010) on the existence of the global pullback attractors for the generated random dynamical systems. We also prove sufficient conditions for the attractor to be a singleton, thus the pathwise convergence is in both pullback and forward senses.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Luu Hoang Duc

<p style='text-indent:20px;'>We provide an analytic approach to study the asymptotic dynamics of rough differential equations, with the driving noises of Hölder continuity. Such systems can be solved with Lyons' theory of rough paths, in particular the rough integrals are understood in the Gubinelli sense for controlled rough paths. Using the framework of random dynamical systems and random attractors, we prove the existence and upper semi-continuity of the global pullback attractor for dissipative systems perturbed by bounded noises. Moreover, if the unperturbed system is strictly dissipative then the random attractor is a singleton for sufficiently small noise intensity.</p>


1991 ◽  
Vol 43 (5) ◽  
pp. 1098-1120 ◽  
Author(s):  
Jianhong Wu ◽  
H. I. Freedman

AbstractThis paper is devoted to the machinery necessary to apply the general theory of monotone dynamical systems to neutral functional differential equations. We introduce an ordering structure for the phase space, investigate its compatibility with the usual uniform convergence topology, and develop several sufficient conditions of strong monotonicity of the solution semiflows to neutral equations. By applying some general results due to Hirsch and Matano for monotone dynamical systems to neutral equations, we establish several (generic) convergence results and an equivalence theorem of the order stability and convergence of precompact orbits. These results are applied to show that each orbit of a closed biological compartmental system is convergent to a single equilibrium.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Yamin Wang ◽  
Ziqiao Huang ◽  
Fuad E. Alsaadi ◽  
Stanislao Lauria ◽  
Yurong Liu

This paper is concerned with the random attractors for a class of second-order stochastic lattice dynamical systems. We first prove the uniqueness and existence of the solutions of second-order stochastic lattice dynamical systems in the spaceF=lλ2×l2. Then, by proving the asymptotic compactness of the random dynamical systems, we establish the existence of the global random attractor. The system under consideration is quite general, and many existing results can be regarded as the special case of our results.


2004 ◽  
Vol 04 (03) ◽  
pp. 385-404 ◽  
Author(s):  
J. A. LANGA ◽  
B. SCHMALFUSS

In the last decade, the concept of pullback attractor has become one of the usual tools to describe some qualitative properties of non-autonomous partial differential equations. A pullback attractor is a family of compact sets, invariant for the corresponding process related to the equation, and attracting from the past, and it assumes a natural generalization of the now classical concept of global attractor for autonomous partial differential equations. In this work we give sufficient conditions in order to prove the finite Hausdorff and fractal dimensionality of pullback attractors for non-autonomous infinite dimensional dynamical systems, and we apply our results to a generalized non-autonomous partial differential equation of Navier–Stokes type.


Sign in / Sign up

Export Citation Format

Share Document