Discrete and Continuous Dynamical Systems
Latest Publications


TOTAL DOCUMENTS

4654
(FIVE YEARS 918)

H-INDEX

55
(FIVE YEARS 7)

Published By American Institute Of Mathematical Sciences

1553-5231, 1078-0947

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuki Kaneko ◽  
Hiroshi Matsuzawa ◽  
Yoshio Yamada

<p style='text-indent:20px;'>We study a free boundary problem of a reaction-diffusion equation <inline-formula><tex-math id="M1">\begin{document}$ u_t = \Delta u+f(u) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ t&gt;0,\ |x|&lt;h(t) $\end{document}</tex-math></inline-formula> under a radially symmetric environment in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>. The reaction term <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> has positive bistable nonlinearity, which satisfies <inline-formula><tex-math id="M5">\begin{document}$ f(0) = 0 $\end{document}</tex-math></inline-formula> and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface <inline-formula><tex-math id="M6">\begin{document}$ \{x\in \mathbb{R}^N:\ |x| = h(t)\} $\end{document}</tex-math></inline-formula>, which expands to infinity as <inline-formula><tex-math id="M7">\begin{document}$ t\to\infty $\end{document}</tex-math></inline-formula>, even when the corresponding semi-wave problem does not admit solutions.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Andrea Bondesan ◽  
Marc Briant

<p style='text-indent:20px;'>Recently, the authors proved [<xref ref-type="bibr" rid="b2">2</xref>] that the Maxwell-Stefan system with an incompressibility-like condition on the total flux can be rigorously derived from the multi-species Boltzmann equation. Similar cross-diffusion models have been widely investigated, but the particular case of a perturbative incompressible setting around a non constant equilibrium state of the mixture (needed in [<xref ref-type="bibr" rid="b2">2</xref>]) seems absent of the literature. We thus establish a quantitative perturbative Cauchy theory in Sobolev spaces for it. More precisely, by reducing the analysis of the Maxwell-Stefan system to the study of a quasilinear parabolic equation on the sole concentrations and with the use of a suitable anisotropic norm, we prove global existence and uniqueness of strong solutions and their exponential trend to equilibrium in a perturbative regime around any macroscopic equilibrium state of the mixture. As a by-product, we show that the equimolar diffusion condition naturally appears from this perturbative incompressible setting.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jeongho Kim ◽  
Bora Moon

<p style='text-indent:20px;'>We present two types of the hydrodynamic limit of the nonlinear Schrödinger-Chern-Simons (SCS) system. We consider two different scalings of the SCS system and show that each SCS system asymptotically converges towards the compressible and incompressible Euler system, coupled with the Chern-Simons equations and Poisson equation respectively, as the scaled Planck constant converges to 0. Our method is based on the modulated energy estimate. In the case of compressible limit, we observe that the classical theory of relative entropy method can be applied to show the hydrodynamic limit, with the additional quantum correction term. On the other hand, for the incompressible limit, we directly estimate the modulated energy to derive the desired asymptotic convergence.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Dong Li

<p style='text-indent:20px;'>We introduce a regularization-free approach for the wellposedness of the classic Cahn-Hilliard equation with logarithmic potentials.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanze Kong ◽  
Qi Wang

<p style='text-indent:20px;'>One of the most impressive findings in chemotaxis is the aggregation that randomly distributed bacteria, when starved, release a diffusive chemical to attract and group with others to form one or several stable aggregates in a long time. This paper considers pattern formation within the minimal Keller–Segel chemotaxis model with a focus on the stability and dynamics of its multi-spike steady states. We first show that any steady-state must be a periodic replication of the spatially monotone one and they present multi-spikes when the chemotaxis rate is large; moreover, we prove that all the multi-spikes are unstable through their refined asymptotic profiles, and then find a fully-fledged hierarchy of free entropy energy of these aggregates. Our results also complement the literature by finding that when the chemotaxis is strong, the single boundary spike has the least energy hence is the most stable, the steady-state with more spikes has larger free energy, while the constant has the largest free energy and is always unstable. These results provide new insights into the model's intricate global dynamics, and they are illustrated and complemented by numerical studies which also demonstrate the metastability and phase transition behavior in chemotactic movement.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Marco Bravin ◽  
Luis Vega

<p style='text-indent:20px;'>In this note we study the initial value problem in a critical space for the one dimensional Schrödinger equation with a cubic non-linearity and under some smallness conditions. In particular the initial data is given by a sequence of Dirac deltas with different amplitudes but equispaced. This choice is motivated by a related geometrical problem; the one describing the flow of curves in three dimensions moving in the direction of the binormal with a velocity that is given by the curvature.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fan Wu ◽  
Linlin Fu ◽  
Jiahao Xu

<p style='text-indent:20px;'>For <inline-formula><tex-math id="M2">\begin{document}$ C^2 $\end{document}</tex-math></inline-formula> cos-type potentials, large coupling constants, and fixed <inline-formula><tex-math id="M3">\begin{document}$ Diophantine $\end{document}</tex-math></inline-formula> frequency, we show that the density of the spectral points associated with the Schrödinger operator is larger than 0. In other words, for every fixed spectral point <inline-formula><tex-math id="M4">\begin{document}$ E $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \liminf\limits_{\epsilon\to 0}\frac{|(E-\epsilon,E+\epsilon)\bigcap\Sigma_{\alpha,\lambda\upsilon}|}{2\epsilon} = \beta $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M6">\begin{document}$ \beta\in [\frac{1}{2},1] $\end{document}</tex-math></inline-formula>. Our approach is a further improvement on the papers [<xref ref-type="bibr" rid="b15">15</xref>] and [<xref ref-type="bibr" rid="b17">17</xref>].</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Balázs Bárány ◽  
Michaƚ Rams ◽  
Ruxi Shi

<p style='text-indent:20px;'>In this paper, we study the topological spectrum of weighted Birk–hoff averages over aperiodic and irreducible subshifts of finite type. We show that for a uniformly continuous family of potentials, the spectrum is continuous and concave over its domain. In case of typical weights with respect to some ergodic quasi-Bernoulli measure, we determine the spectrum. Moreover, in case of full shift and under the assumption that the potentials depend only on the first coordinate, we show that our result is applicable for regular weights, like Möbius sequence.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Victor Vargas

<p style='text-indent:20px;'>Consider <inline-formula><tex-math id="M2">\begin{document}$ \beta &gt; 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \lfloor \beta \rfloor $\end{document}</tex-math></inline-formula> its integer part. It is widely known that any real number <inline-formula><tex-math id="M4">\begin{document}$ \alpha \in \Bigl[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\Bigr] $\end{document}</tex-math></inline-formula> can be represented in base <inline-formula><tex-math id="M5">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> using a development in series of the form <inline-formula><tex-math id="M6">\begin{document}$ \alpha = \sum_{n = 1}^\infty x_n\beta^{-n} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M7">\begin{document}$ x = (x_n)_{n \geq 1} $\end{document}</tex-math></inline-formula> is a sequence taking values into the alphabet <inline-formula><tex-math id="M8">\begin{document}$ \{0,\; ...\; ,\; \lfloor \beta \rfloor\} $\end{document}</tex-math></inline-formula>. The so called <inline-formula><tex-math id="M9">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-shift, denoted by <inline-formula><tex-math id="M10">\begin{document}$ \Sigma_\beta $\end{document}</tex-math></inline-formula>, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy <inline-formula><tex-math id="M11">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id="M12">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>. Fixing a Hölder continuous potential <inline-formula><tex-math id="M13">\begin{document}$ A $\end{document}</tex-math></inline-formula>, we show an explicit expression for the main eigenfunction of the Ruelle operator <inline-formula><tex-math id="M14">\begin{document}$ \psi_A $\end{document}</tex-math></inline-formula>, in order to obtain a natural extension to the bilateral <inline-formula><tex-math id="M15">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-shift of its corresponding Gibbs state <inline-formula><tex-math id="M16">\begin{document}$ \mu_A $\end{document}</tex-math></inline-formula>. Our main goal here is to prove a first level large deviations principle for the family <inline-formula><tex-math id="M17">\begin{document}$ (\mu_{tA})_{t&gt;1} $\end{document}</tex-math></inline-formula> with a rate function <inline-formula><tex-math id="M18">\begin{document}$ I $\end{document}</tex-math></inline-formula> attaining its maximum value on the union of the supports of all the maximizing measures of <inline-formula><tex-math id="M19">\begin{document}$ A $\end{document}</tex-math></inline-formula>. The above is proved through a technique using the representation of <inline-formula><tex-math id="M20">\begin{document}$ \Sigma_\beta $\end{document}</tex-math></inline-formula> and its bilateral extension <inline-formula><tex-math id="M21">\begin{document}$ \widehat{\Sigma_\beta} $\end{document}</tex-math></inline-formula> in terms of the quasi-greedy <inline-formula><tex-math id="M22">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id="M23">\begin{document}$ 1 $\end{document}</tex-math></inline-formula> and the so called involution kernel associated to the potential <inline-formula><tex-math id="M24">\begin{document}$ A $\end{document}</tex-math></inline-formula>.</p>


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hailiang Li ◽  
Houzhi Tang ◽  
Haitao Wang

<p style='text-indent:20px;'>In this paper, we study the global existence and pointwise behavior of classical solution to one dimensional isentropic Navier-Stokes equations with mixed type boundary condition in half space. Based on classical energy method for half space problem, the global existence of classical solution is established firstly. Through analyzing the quantitative relationships of Green's function between Cauchy problem and initial boundary value problem, we observe that the leading part of Green's function for the initial boundary value problem is composed of three items: delta function, diffusive heat kernel, and reflected term from the boundary. Then applying Duhamel's principle yields the explicit expression of solution. With the help of accurate estimates for nonlinear wave coupling and the elliptic structure of velocity, the pointwise behavior of the solution is obtained under some appropriate assumptions on the initial data. Our results prove that the solution converges to the equilibrium state at the optimal decay rate <inline-formula><tex-math id="M1">\begin{document}$ (1+t)^{-\frac{1}{2}} $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M2">\begin{document}$ L^\infty $\end{document}</tex-math></inline-formula> norm.</p>


Sign in / Sign up

Export Citation Format

Share Document