R&D of Full-Scale Partial Vacuum Vessel Mockup for Future Fusion Engineering Test Reactor in China

2015 ◽  
Vol 34 (3) ◽  
pp. 666-670 ◽  
Author(s):  
Ma Jianguo ◽  
Wu Jiefeng ◽  
Liu Zhihong ◽  
Fan Xiaosong
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Chen Zhu ◽  
Minyou Ye ◽  
Xufeng Liu ◽  
Shenji Wang ◽  
Shifeng Mao ◽  
...  

An integration design platform is under development for the design of the China Fusion Engineering Test Reactor (CFETR). It mainly includes the integration physical design platform and the integration engineering design platform. The integration engineering design platform aims at performing detailed engineering design for each tokamak component (e.g., breeding blanket, divertor, and vacuum vessel). The vacuum vessel design and analysis module is a part of the integration engineering design platform. The main idea of this module is to integrate the popular CAD/CAE software to form a consistent development environment. Specifically, the software OPTIMUS provides the approach to integrate the CAD/CAE software such as CATIA and ANSYS and form a design/analysis workflow for the vacuum vessel module. This design/analysis workflow could automate the process of modeling and finite element (FE) analysis for vacuum vessel. Functions such as sensitivity analysis and optimization of geometric parameters have been provided based on the design/analysis workflow. In addition, data from the model and FE analysis could be easily exchanged among different modules by providing a unifying data structure to maintain the consistency of the global design. This paper describes the strategy and methodology of the workflow in the vacuum vessel module. An example is given as a test of the workflow and functions of the vacuum vessel module. The results indicate that the module is a feasible framework for future application.


2020 ◽  
Vol 62 (10) ◽  
pp. 105007
Author(s):  
H Li ◽  
G Q Li ◽  
X J Liu ◽  
H Xie ◽  
J P Qian ◽  
...  

2020 ◽  
Vol 89 (9) ◽  
pp. 094201
Author(s):  
Haojun Yang ◽  
Kun Lu ◽  
Xiongyi Huang ◽  
Jian Rong ◽  
Yuntao Song

2018 ◽  
Vol 37 (6) ◽  
pp. 308-316 ◽  
Author(s):  
Salah Ud-Din Khan ◽  
Jian Wang ◽  
Yuntao Song ◽  
Shahab Ud-Din Khan ◽  
Usman Ali Rana ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 912 ◽  
Author(s):  
Jingwen Zhang ◽  
Liming Yu ◽  
Yongchang Liu ◽  
Zongqing Ma ◽  
Huijun Li ◽  
...  

The as-welded sectors of China Fusion Engineering Testing Reactor (CFETR) vacuum vessel (VV) have very tight tolerances. However, it is difficult to investigate the welding stress and distortion without the production of a full-scale prototype. Therefore, it is important to predict and reduce the welding stress and distortion to guarantee the final assembly by using an accurately adjusted finite element model. In this paper, a full-scale finite element model of the 1/32 VV mock-up was built by ABAQUS which is a powerful finite element software for engineering simulation, and three different tungsten inert gas (TIG) welding sequences were simulated to study the effect of welding sequences on the welding stress and distortion. The results showed that the main welding stress happened on the weld zone, and the maximum distortion occurred on the shell near the welding joints between the inboard segment (PS1) and the lower segment (PS4). The inboard segment (PS1), upper segment (PS2), and lower segment (PS4) distorted to inside of the shell perpendicularly, while the equatorial segment (PS3) distorted to outside of the shell perpendicularly. According to the further analysis, the maximum welding stresses in sequence 1, sequence 2, and sequence 3 were 234.509 MPa, 234.731 MPa, and 234.508 MPa, respectively, and the average welding stresses were 117.268 MPa, 117.367 MPa, and 117.241 MPa, respectively, meanwhile, the maximum welding displacements in sequence 1, sequence 2, and sequence 3 were 1.158 mm, 1.157 mm, and 1.149 mm, respectively, and the average welding displacements were 1.048 mm, 1.053 mm, and 1.042 mm, respectively. Thus, an optimized welding sequence 3 was obtained and could be applied to the practical assembly process of the 1/32 VV mock-up.


Sign in / Sign up

Export Citation Format

Share Document