scholarly journals The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective

Author(s):  
Christoph Buchheim ◽  
Dorothee Henke

AbstractWe consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function.

2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4642
Author(s):  
Li Dai ◽  
Dahai You ◽  
Xianggen Yin

Traditional robust optimization methods use box uncertainty sets or gamma uncertainty sets to describe wind power uncertainty. However, these uncertainty sets fail to utilize wind forecast error probability information and assume that the wind forecast error is symmetrical and independent. This assumption is not reasonable and makes the optimization results conservative. To avoid such conservative results from traditional robust optimization methods, in this paper a novel data driven optimization method based on the nonparametric Dirichlet process Gaussian mixture model (DPGMM) was proposed to solve energy and reserve dispatch problems. First, we combined the DPGMM and variation inference algorithm to extract the GMM parameter information embedded within historical data. Based on the parameter information, a data driven polyhedral uncertainty set was proposed. After constructing the uncertainty set, we solved the robust energy and reserve problem. Finally, a column and constraint generation method was employed to solve the proposed data driven optimization method. We used real historical wind power forecast error data to test the performance of the proposed uncertainty set. The simulation results indicated that the proposed uncertainty set had a smaller volume than other data driven uncertainty sets with the same predefined coverage rate. Furthermore, the simulation was carried on PJM 5-bus and IEEE-118 bus systems to test the data driven optimization method. The simulation results demonstrated that the proposed optimization method was less conservative than traditional data driven robust optimization methods and distributionally robust optimization methods.


Author(s):  
Shixin Wang ◽  
Xuan Wang ◽  
Jiawei Zhang

Problem definition: The theoretical investigation of the effectiveness of limited flexibility has mainly focused on a performance metric that is based on the maximum sales in units. However, this could lead to substantial profit losses when the maximum sales metric is used to guide flexibility designs while the products have considerably large profit margin differences. Academic/practical relevance: We address this issue by introducing margin differentials into the analysis of process flexibility designs, and our results can provide useful guidelines for the evaluation and design of flexibility configurations when the products have heterogeneous margins. Methodology: We adopt a robust optimization framework and study process flexibility designs from the worst-case perspective by introducing the dual margin group index (DMGI). Results and managerial implications: We show that a general class of worst-case performance measures can be expressed as functions of a design’s DMGIs and the given uncertainty set. Moreover, the DMGIs lead to a partial ordering that enables us to compare the worst-case performance of different designs. Applying these results, we prove that under the so-called partwise independently symmetric uncertainty sets and a broad class of worst-case performance measures, the alternate long-chain design is optimal among all long-chain designs with equal numbers of high-profit products and low-profit products. Finally, we develop a heuristic based on the DMGIs to generate effective flexibility designs when products exhibit margin differentials.


Author(s):  
Eliot Rudnick-Cohen ◽  
Jeffrey W. Herrmann ◽  
Shapour Azarm

Feasibility robust optimization techniques solve optimization problems with uncertain parameters that appear only in their constraint functions. Solving such problems requires finding an optimal solution that is feasible for all realizations of the uncertain parameters. This paper presents a new feasibility robust optimization approach involving uncertain parameters defined on continuous domains without any known probability distributions. The proposed approach integrates a new sampling-based scenario generation scheme with a new scenario reduction approach in order to solve feasibility robust optimization problems. An analysis of the computational cost of the proposed approach was performed to provide worst case bounds on its computational cost. The new proposed approach was applied to three test problems and compared against other scenario-based robust optimization approaches. A test was conducted on one of the test problems to demonstrate that the computational cost of the proposed approach does not significantly increase as additional uncertain parameters are introduced. The results show that the proposed approach converges to a robust solution faster than conventional robust optimization approaches that discretize the uncertain parameters.


Author(s):  
Jianhua Zhou ◽  
Mian Li

Uncertainty is inevitable in real world. It has to be taken into consideration, especially in engineering optimization; otherwise the obtained optimal solution may become infeasible. Robust optimization (RO) approaches have been proposed to deal with this issue. Most existing RO algorithms use double-looped structures in which a large amount of computational efforts have been spent in the inner loop optimization to determine the robustness of candidate solutions. In this paper, an advanced approach is presented where no optimization run is required to be performed for robustness evaluations in the inner loop. Instead, a concept of Utopian point is proposed and the corresponding maximum variable/parameter variation will be obtained by just solving a set of linear equations. The obtained robust optimal solution from the new approach may be conservative, but the deviation from the true robust optimal solution is very small given the significant improvement in the computational efficiency. Six numerical and engineering examples are tested to show the applicability and efficiency of the proposed approach, whose solutions and computational time are compared with those from a similar but double-looped approach, SQP-RO, proposed previously.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
M. Li ◽  
S. Azarm

We present a new solution approach for multidisciplinary design optimization (MDO) problems that, for the first time in literature, has all of the following characteristics: Each discipline has multiple objectives and constraints with mixed continuous-discrete variables; uncertainty exists in parameters and as a result, uncertainty propagation exists within and across disciplines; probability distributions of uncertain parameters are not available but their interval of uncertainty is known; and disciplines can be fully (two-way) coupled. The proposed multiobjective collaborative robust optimization (McRO) approach uses a multiobjective genetic algorithm as an optimizer. McRO obtains solutions that are as best as possible in a multiobjective and multidisciplinary sense. Moreover, for McRO solutions, the variation of objective and/or constraint functions can be kept within an acceptable range. McRO includes a technique for interdisciplinary uncertainty propagation. The approach can be used for robust optimization of MDO problems with multiple objectives, or constraints, or both together at system and subsystem levels. Results from an application of McRO to a numerical and an engineering example are presented. It is concluded that McRO can solve fully coupled MDO problems with interval uncertainty and obtain solutions that are comparable to a single-disciplinary robust optimization approach.


2015 ◽  
Vol 157 (1) ◽  
pp. 277-296 ◽  
Author(s):  
Jinil Han ◽  
Kyungsik Lee ◽  
Chungmok Lee ◽  
Ki-Seok Choi ◽  
Sungsoo Park

Author(s):  
Liang Xu ◽  
Yi Zheng ◽  
Li Jiang

Problem definition: For the standard newsvendor problem with an unknown demand distribution, we develop an approach that uses data input to construct a distribution ambiguity set with the nonparametric characteristics of the true distribution, and we use it to make robust decisions. Academic/practical relevance: Empirical approach relies on historical data to estimate the true distribution. Although the estimated distribution converges to the true distribution, its performance with limited data is not guaranteed. Our approach generates robust decisions from a distribution ambiguity set that is constructed by data-driven estimators for nonparametric characteristics and includes the true distribution with the desired probability. It fits situations where data size is small. Methodology: We apply a robust optimization approach with nonparametric information. Results: Under a fixed method to partition the support of the demand, we construct a distribution ambiguity set, build a protection curve as a proxy for the worst-case distribution in the set, and use it to obtain a robust stocking quantity in closed form. Implementation-wise, we develop an adaptive method to continuously feed data to update partitions with a prespecified confidence level in their unbiasedness and adjust the protection curve to obtain robust decisions. We theoretically and experimentally compare the proposed approach with existing approaches. Managerial implications: Our nonparametric approach under adaptive partitioning guarantees that the realized average profit exceeds the worst-case expected profit with a high probability. Using real data sets from Kaggle.com, it can outperform existing approaches in yielding profit rate and stabilizing the generated profits, and the advantages are more prominent as the service ratio decreases. Nonparametric information is more valuable than parametric information in profit generation provided that the service requirement is not too high. Moreover, our proposed approach provides a means of combining nonparametric and parametric information in a robust optimization framework.


Author(s):  
Frauke Liers ◽  
Lars Schewe ◽  
Johannes Thürauf

For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal size of the uncertainty set such that robust feasibility of the MIP can be guaranteed. The approaches for the RRF in the literature are restricted to continuous optimization problems. We first analyze relations between the RRF of a MIP and its continuous linear (LP) relaxation. In particular, we derive conditions under which a MIP and its LP relaxation have the same RRF. Afterward, we extend the notion of the RRF such that it can be applied to a large variety of optimization problems and uncertainty sets. In contrast to the setting commonly used in the literature, we consider for every constraint a potentially different uncertainty set that is not necessarily full-dimensional. Thus, we generalize the RRF to MIPs and to include safe variables and constraints; that is, where uncertainties do not affect certain variables or constraints. In the extended setting, we again analyze relations between the RRF for a MIP and its LP relaxation. Afterward, we present methods for computing the RRF of LPs and of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF. Summary of Contribution: Robust optimization is an important field of operations research due to its capability of protecting optimization problems from data uncertainties that are usually defined via so-called uncertainty sets. Intensive research has been conducted in developing algorithmically tractable reformulations of the usually semi-infinite robust optimization problems. However, in applications it also important to construct appropriate uncertainty sets (i.e., prohibiting too conservative, intractable, or even infeasible robust optimization problems due to the choice of the uncertainty set). In doing so, it is useful to know the maximal “size” of a given uncertainty set such that a robust feasible solution still exists. In this paper, we study one notion of “size”: the radius of robust feasibility (RRF). We contribute on the theoretical side by generalizing the RRF to MIPs as well as to include “safe” variables and constraints (i.e., where uncertainties do not affect certain variables or constraints). This allows to apply the RRF to many applications since safe variables and constraints exist in most applications. We also provide first methods for computing the RRF of LPs as well as of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF.


Sign in / Sign up

Export Citation Format

Share Document