engineering optimization
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 108)

H-INDEX

37
(FIVE YEARS 10)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 276
Author(s):  
Helong Yu ◽  
Shimeng Qiao ◽  
Ali Asghar Heidari ◽  
Chunguang Bi ◽  
Huiling Chen

The seagull optimization algorithm (SOA) is a novel swarm intelligence algorithm proposed in recent years. The algorithm has some defects in the search process. To overcome the problem of poor convergence accuracy and easy to fall into local optimality of seagull optimization algorithm, this paper proposed a new variant SOA based on individual disturbance (ID) and attraction-repulsion (AR) strategy, called IDARSOA, which employed ID to enhance the ability to jump out of local optimum and adopted AR to increase the diversity of population and make the exploration of solution space more efficient. The effectiveness of the IDARSOA has been verified using representative comprehensive benchmark functions and six practical engineering optimization problems. The experimental results show that the proposed IDARSOA has the advantages of better convergence accuracy and a strong optimization ability than the original SOA.


2021 ◽  
Author(s):  
Guillermo Bernardez ◽  
Jose Suarez-Varela ◽  
Albert Lopez ◽  
Bo Wu ◽  
Shihan Xiao ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-32
Author(s):  
Hadi Bayzidi ◽  
Siamak Talatahari ◽  
Meysam Saraee ◽  
Charles-Philippe Lamarche

In this paper, a new metaheuristic optimization algorithm, called social network search (SNS), is employed for solving mixed continuous/discrete engineering optimization problems. The SNS algorithm mimics the social network user’s efforts to gain more popularity by modeling the decision moods in expressing their opinions. Four decision moods, including imitation, conversation, disputation, and innovation, are real-world behaviors of users in social networks. These moods are used as optimization operators that model how users are affected and motivated to share their new views. The SNS algorithm was verified with 14 benchmark engineering optimization problems and one real application in the field of remote sensing. The performance of the proposed method is compared with various algorithms to show its effectiveness over other well-known optimizers in terms of computational cost and accuracy. In most cases, the optimal solutions achieved by the SNS are better than the best solution obtained by the existing methods.


Sign in / Sign up

Export Citation Format

Share Document