Differentiation of Ni3C crystalline phase from hexagonal-close-packed Ni phase in ethylene glycol-mediated sol–gel process and excellent catalytic behavior of Ni/N-doped C nanomaterials toward hydrogenation reduction reaction of 4-nitrophenol

2019 ◽  
Vol 93 (2) ◽  
pp. 341-353
Author(s):  
Jinling Wang ◽  
Shengxiang Jiang ◽  
Pingyun Li ◽  
Hua Ren
2018 ◽  
Vol 768 ◽  
pp. 211-217 ◽  
Author(s):  
Rui Wang ◽  
Yu Kun Sun ◽  
Bao Jia Qi Jiang ◽  
Hui Yang ◽  
Xing Zhong Guo

Macroporous Ca12Al14O33(C12A7) mayenite monoliths have been successfully prepared via a sol-gel process in the presence of propylene oxide (PO) and poly (ethyleneoxide) (PEO). Gelation of CaO-Al2O3binary system with nitrates salts as additional precursors is accelerated by PO as an acid scavenger, while PEO works as a phase separation inducer to mediate the phase separation of the system. Appropriate PO and PEO amounts allow the formation of monolithic xerogel with interconnected macropores and co-continuous skeletons. The resultant dried gels are amorphous and the single crystalline phase Ca12Al14O33mayenite forms after heat-treatment at 1100 °C in air, while the macrostructure is preserved with a porosity as high as 78% and smoother and denser skeletons.


2013 ◽  
Vol 832 ◽  
pp. 478-482 ◽  
Author(s):  
Sharul Ashikin Kamaruddin ◽  
Mohd Zainizan Sahdan ◽  
Kah Yoong Chan ◽  
Siti Nooraya Mohd Tawil ◽  
Nayan Nafarizal ◽  
...  

Zinc oxide (ZnO) is a promising electronic material for a variety of large area electronic applications including thin-film sensors, transistors, and solar cells. Various techniques have been focused and explored to synthesize ZnO films. In this study, sol-gel process was adopted as the fabrications process to grow the ZnO films. Three different types of solvents were used including ethanol, isopropanol and ethylene glycol as the reaction medium in the ZnO solution. The correlation between different solvents used and the properties of the ZnO films was explored and observed. The surface morphologies, structural and optical properties were examined using field émission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. Through the observation from FESEM results, the surface morphology changed when different solvents were used. The crystallographic structures of the ZnO films demonstrate high crystallinity, and the extracted crystallite size is around 30 nm. Furthermore, ZnO films synthesized using isopropanol and ethylene glycol exhibit high transmittance spectra greater than 80% in the visible region. In general, the experimental results revealed that different solvents in the sol-gel process exert influences on the properties of the ZnO films.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2365
Author(s):  
Dan Xu ◽  
An Yan ◽  
Shifeng Xu ◽  
Yongjun Zhou ◽  
Shu Yang ◽  
...  

Triple (H+/O2−/e−) conducting oxides (TCOs) have been extensively investigated as the most promising cathode materials for solid oxide fuel cells (SOFCs) because of their excellent catalytic activity for oxygen reduction reaction (ORR) and fast proton transport. However, here we report a stable twin-perovskite nanocomposite Ba-Co-Ce-Y-O (BCCY) with triple conducting properties as a conducting accelerator in semiconductor ionic fuel cells (SIFCs) electrolytes. Self-assembled BCCY nanocomposite is prepared through a complexing sol–gel process. The composite consists of a cubic perovskite (Pm-3m) phase of BaCo0.9Ce0.01Y0.09O3-δ and a rhombohedral perovskite (R-3c) phase of BaCe0.78Y0.22O3-δ. A new semiconducting–ionic conducting composite electrolyte is prepared for SIFCs by the combination of BCCY and CeO2 (BCCY-CeO2). The fuel cell with the prepared electrolyte (400 μm in thickness) can deliver a remarkable peak power density of 1140 mW·cm−2 with a high open circuit voltage (OCV) of 1.15 V at 550 °C. The interface band energy alignment is employed to explain the suppression of electronic conduction in the electrolyte. The hybrid H+/O2− ions transport along the surfaces or grain boundaries is identified as a new way of ion conduction. The comprehensive analysis of the electrochemical properties indicates that BCCY can be applied in electrolyte, and has shown tremendous potential to improve ionic conductivity and electrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document