propylene oxide
Recently Published Documents


TOTAL DOCUMENTS

2446
(FIVE YEARS 219)

H-INDEX

85
(FIVE YEARS 7)

Author(s):  
Shoji Iguchi ◽  
Masashi Kataoka ◽  
Ryosuke Hoshino ◽  
Ichiro Yamanaka

Direct electro-oxidation of C3H6 was achieved using a solid polymer electrolyte (SPE) electrolysis cell. PtOx anode prepared by mild oxidation of Pt black exhibited superior activity for propylene oxide (PO)...


2021 ◽  
Vol 29 (12) ◽  
pp. 855-863
Author(s):  
Yeong Hyun Seo ◽  
Yong Bin Hyun ◽  
Hyun Ju Lee ◽  
Hong Cheol Lee ◽  
Jung Hyun Lee ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1450
Author(s):  
Guillermo Penche ◽  
Juan R. González-Velasco ◽  
M. Pilar González-Marcos

In this work, six porous hexacyanometallate complexes (Ni3[Co(CN)6]2, Co3[Co(CN)6]2, Fe3[Co(CN)6]2, Ni3[Fe(CN)6]2, Co3[Fe(CN)6]2, Fe4[Fe(CN)6]2) were synthesized by a complexing agent assisted coprecipitation method and thoroughly characterized via X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), in situ high-temperature X-ray diffraction (HT-XRD), elemental analysis (EA), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 physisorption, and gas–solid phase titration with NH3. The thermal stability, chemical composition, pore size and volume, crystallite size and density of surface acid sites were strongly sensitive to both the transition metal and the cyanometallate anion employed. On that basis, transition metal hexacyanometallates must be perceived as an adaptable class of zeolite-like microporous materials. The catalytic properties of these compounds were tested by copolymerization of propylene oxide and CO2, a green route to obtain biodegradable aliphatic polycarbonates. All compounds under study showed moderate activity in the target reaction. The obtained copolymers were characterized by modest CO2 content (carbonate units ranging from 16 to 33%), random structure (RPEC ≈ 70%), and moderate molecular weight (Mw = 6000–85,400 g/mol) with broad dispersity values (ĐM = 4.1–15.8).


Sign in / Sign up

Export Citation Format

Share Document