scholarly journals Combined thermal analysis of plant oils

Author(s):  
Kinga Tamási ◽  
Kálmán Marossy

AbstractThe paper deals with the study of seven selected natural plant oils. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermally stimulated discharge (TSD) methods were used. It has been found that most of the oils tested are in a glassy state at low temperature and have multiple transitions in the low temperature range. DSC shows complex melting-like processes or glass transition. For both DMA and TSD, the scaffold supportive method was used and found as a suitable one. DMA and TSD proved more sensitive than DSC and revealed at least two transitions between − 120 and − 40 °C. In the case of three oils (argan, avocado and sunflower), current reversal was observed by TSD; this symptom cannot be fully explained at the moment.

2016 ◽  
Vol 51 (16) ◽  
pp. 2301-2313 ◽  
Author(s):  
B Stankiewicz

Modern bridge structures need light decks with long durability and promising technical parameters. Glass fiber-reinforced polymer orthotropic bridge deck creates unconventional possibilities in bridge designing. Parallel identification of glass fiber-reinforced polymer deck panel by differential thermal analysis, spectroscopy analysis, scanning and optical microscope monitoring, dynamic mechanical analysis and differential scanning calorimetry analysis, tensile and flexural tests will be presented in the paper. Differential thermal analysis was carried out for estimation of the physical and chemical transformation of glass fiber. The differential scanning calorimetry experiments were performed in the glass fiber-reinforced polymer–bridge deck material for determining the mass variation and the energy changes suffered by the materials, as a function of temperature and time. Dynamic mechanical analysis was allowed to detect thermal effects based on the changes in the modulus or damping behavior. Tensile and flexural tests allowed the observation of the decomposition process and information about the basic stress parameters of glass fiber-reinforced polymer material used in bridge applications was taken. Aforementioned analyses are necessary to examine the durability description of the composite element.


Author(s):  
Chukwuemeka L. Ihemaguba ◽  
Kálmán Marossy

Abstract The paper deals with the study of plasticizers using different thermal methods. The literature data on the melting points of plasticizers proved uncertain; we intended to gather the data by other methods, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermally stimulated discharge (TSD). Results of ten plasticizers are demonstrated. During this work, we found that most of plasticizers have no well-defined melting point, and the solidification of plasticizer is similar to the glass transition of polymers. Only the di-n-butyl-phthalate showed regular crystallization. Thermally stimulated discharge current (TSD) method revealed that these compounds have several transitions –dispersion ranges assigned to different molecular motions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 270
Author(s):  
Evgeniy V. Belukhichev ◽  
Vera E. Sitnikova ◽  
Evgenia O. Samuylova ◽  
Mayya V. Uspenskaya ◽  
Daria M. Martynova

Polymeric packaging materials are one of the factors of environmental pollution. Reducing the environmental burden is possible by increasing the environmental friendliness of packaging materials. In this work, we study polymer films based on polyvinyl chloride (PVC) with a copolymer of 3-hydroxybutyrate with 3-hydroxyhexanoate P (3-GB) (3-GG) with different component ratios. The process of processing blends in the process of obtaining a packaging film is considered. The optical characteristics of the obtained films are determined. Thermal analysis of the obtained films was carried out using the differential scanning calorimetry (DSC), TGA, and thermomechanical analysis (TMA) methods. The degree of gelling of the resulting mixture was determined. It is shown that PHB has miscibility with PVC.


2012 ◽  
Vol 111 (3) ◽  
pp. 1707-1716 ◽  
Author(s):  
Salaam Saleh ◽  
Druthiman Reddy Mantheni ◽  
Manik Pavan Kumar Maheswaram ◽  
Susan Moreno-Molek ◽  
Tobili Sam-Yellowe ◽  
...  

MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2689-2694
Author(s):  
Karla A. Gaspar-Ovalle ◽  
Juan V. Cauich-Rodriguez ◽  
Armando Encinas

ABSTRACTNanofibrous mats of poly ε-caprolactone (PCL) were fabricated by electrospinning. The nanofiber structures were investigated and characterized by scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, static water-contact-angle analysis and mechanical properties. The results showed that the nanofibrous PCL is an ideal biopolymer for cell adhesion, owing to its biocompatibility, biodegradability, structural stability and mechanical properties. Differential scanning calorimetry results showed that the fibrous structure of PCL does not alter its crystallinity. Studies of the mechanical properties, wettability and degradability showed that the structure of the electrospun PCL improved the tensile modulus, tensile strength, wettability and biodegradability of the nanotemplates. To evaluate the nanofibrous structure of PCL on cell adhesion, osteoblasts cells were seeded on these templates. The results showed that both adhesion and proliferation of the cells is viable on these electrospun PCL membranes. Thus electrospinning is a relatively inexpensive and scalable manufacturing technique for submicron to nanometer diameter fibers, which can be of interest in the commodity industry.


Author(s):  
Daniel Larouche

Thermal analysis is applied on aluminum alloys by researchers to investigate mainly phase transformations, while it is regularly used for quality control purposes in industry. Techniques like cooling curve analysis, differential thermal analysis, differential scanning calorimetry, and isothermal calorimetry are amongst those most frequently used by scientists and engineers. These techniques will be described, and a mathematical description of the results will be developed. State-of-the-art quantification methods applied on aluminum alloys will be presented and criticized based on specific examples taken from the literature.


2006 ◽  
Vol 71 (8-9) ◽  
pp. 905-915
Author(s):  
Moura de ◽  
Jivaldo Matos ◽  
Farias de

The synthesis, characterization and thermal degradation of yttrium and lanthanum methanesulfonates is reported. The prepared salts were characterized by elemental analysis and infrared spectroscopy. The thermal degradation study was performed using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC).Using the thermogravimetric data, a kinetic study of the dehydration ofY and Lamethanesulfonates was performed employing the Coats-Redfern and Zsak?methods. It was verified that under heating, yttrium and lanthanum methanesulfonates undergo three main processes: dehydration, thermal degradation and oxide formation. Furthermore, depending on the nature of the atmosphere, i.e., inert or oxidant, the thermal degradation process could be endothermic (N2) or exothermic (air).


2018 ◽  
Vol 39 (4) ◽  
pp. 21
Author(s):  
Gilbert Bannach ◽  
Rafael R. Almeida ◽  
Luis G. Lacerda ◽  
Egon Schnitzler ◽  
Massao Ionashiro

Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.


Sign in / Sign up

Export Citation Format

Share Document