packaging film
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 111)

H-INDEX

34
(FIVE YEARS 9)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
Tristan M. Reyes ◽  
Hunter R. Smith ◽  
Madison P. Wagoner ◽  
Barney S. Wilborn ◽  
Tom Bonner ◽  
...  

With current meat industry efforts focused on improving environmental influencers, adopting sustainable packaging materials may be an easier transition to addressing the sustainability demands of the meat consumer. With the growing popularity of vacuum-packaged meat products, the current study evaluated instrumental surface color on fresh ground beef using vacuum packaging films, recycle-ready film (RRF), standard barrier (STB) and enhanced barrier (ENB). Ground beef packaged using ENB barrier film was lighter (L*), redder (a*) and more vivid (chroma) than all other packaging treatments during the simulated display period (p < 0.05). By day 12 of the simulated retail display, the ground beef surface color became lighter (L*), more yellow (b*), less red (a*), less vivid (chroma) and contained greater forms of calculated metmyoglobin, oxymyoglobin (p < 0.05). The current results suggest that barrier properties of vacuum packaging film for ground beef are pivotal for extending the surface color during fresh shelf-life conditions.


Silicon ◽  
2022 ◽  
Author(s):  
T. Thendral Thiyagu ◽  
G. Gokilakrishnan ◽  
V. C. Uvaraja ◽  
T. Maridurai ◽  
V. R. Arun Prakash

2022 ◽  
pp. 132022
Author(s):  
Li Wang ◽  
Jingge Xu ◽  
Mengmeng Zhang ◽  
Hui Zheng ◽  
Li Li

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
David Gimeno ◽  
Jaime Gonzalez-Buesa ◽  
Rosa Oria ◽  
Maria Eugenia Venturini ◽  
Esther Arias

Red raspberries (Rubus idaeus L.) are highly appreciated by consumers. However, their postharvest shelf life scarcely exceeds 5 d under the refrigeration temperatures usually applied during commercialization, due to their high susceptibility to dehydration, softening and rot incidence. Thus, the objective of this study was to investigate the ability of UV-C radiation (UV1: 2 kJ m−2 and UV2: 4 kJ m−2), passive modified atmosphere packaging (MAP) with transmission rates (TR) for O2 and CO2 of 1805 mL d−1 and 1570 mL d−1 (MAP1), and 902 mL d−1 and 785 mL d−1 (MAP2), respectively, and the combination of both technologies to prolong raspberries’ shelf life at 6 °C. Their influence on respiration, physicochemical parameters, and microbiological and nutritional quality was assessed during 12 d of storage. The combination of 4 kJ m−2 UV-C radiation and a packaging film with O2 and CO2 transmission rates of 902 mL d−1 and 785 mL d−1, respectively, produced a synergistic effect against rot development, delaying senescence of the fruit. The UV2MAP2 and MAP2 samples only showed 1.66% rot incidence after 8 d of storage. The UV2MAP2 samples also had higher bioactive content (1.76 g kg−1 of gallic acid equivalents (GAE), 1.08 g kg−1 of catechin equivalents (CE) and 0.32 g kg−1 of cyanidin 3-O-glucoside equivalents (CGE)) than the control samples at the end of their shelf life. Moreover, the mass loss was minimal (0.56%), and fruit color and firmness were maintained during shelf life. However, the rest of the batches were not suitable for commercialization after 4 d due to excessive mold development.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3337
Author(s):  
Xi Huang ◽  
Xin Zhou ◽  
Qingyin Dai ◽  
Zhiyong Qin

The objective of this study was to prepare a functional biodegradable soy protein isolate (SPI) food packaging film by introducing a natural antimicrobial agent, mangosteen peel extract (MPE, 10 wt% based on SPI), and different concentrations of functional modifiers, ZnO NPs, into the natural polymer SPI by solution casting method. The physical, antioxidant, antibacterial properties and chemical structures were also investigated. The composite film with 5% ZnO NPs had the maximum tensile strength of 8.84 MPa and the lowest water vapor transmission rate of 9.23 g mm/m2 h Pa. The composite film also exhibited excellent UV-blocking, antioxidant, and antibacterial properties against Escherichia coli and Staphylococcus aureus. The TGA results showed that the introduction of MPE and ZnO NPs improved the thermal stability of SPI films. The microstructure of the films was analyzed by SEM to determine the smooth surface of the composite films. ATR-FTIR and XPS analyses demonstrated the strong hydrogen bonding of SPI, MPE, and ZnO NPs in the films. The presence of ZnO NPs in the composite films was also proved by EDX and XRD. These results suggest that SPI/MPE/ZnO composite film is promising for food-active packaging to extend the shelf life of food products.


2021 ◽  
Vol 30 ◽  
pp. 100749
Author(s):  
Truong Dang Le ◽  
Pimonpan Phasupan ◽  
Kanet Visaruthaphong ◽  
Patcharida Chouwatat ◽  
Vu Thi Thu ◽  
...  

2021 ◽  
Vol 2063 (1) ◽  
pp. 012009
Author(s):  
Tahseen A Saki

Abstract In this present study, low density polyethylene/plasticizer starch (LDPE/PLST) blends were prepared as a product to be used in disposable packaging (film applications), reducing the negative polymeric environmental effect. Because of their different molecular structures, LDPE blends with starch are fully immiscible; therefore, a compatibility agent is required. Three different polymer and/or copolymer: poly (vinyl alcohol) hydrolyzed 75% (PVOH), styrene-allyl alcohol copolymer (SAA) and polyethylene glycol (PEG) were selected as compatibilizers containing –OH groups. The effects of compatibilizer on the mechanical and rheological properties of LDPE/PLST blends were investigated and compared to LDPE/PLST without compatibilzer. The blends are also characterized by FTIR, which strongly indicates the existence of compatibilizers that can enhance phase interaction and promote compatibility in the blends of LDPE/PLST. Comparing to the blend without a compatibilizer, the tensile strengths of the blends containing PVOH and SAA increased significantly. The elongation at break results shows similar observation. The rheological measurement results suggested that the addition of a compatibilizer exhibited an increase in the shear stress and apparent viscosity comparing to the uncompatibilized blend except the blend with PEG which exhibited phase separation.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3487
Author(s):  
Walid Abotbina ◽  
S. M. Sapuan ◽  
M. T. H. Sultan ◽  
M. F. M. Alkbir ◽  
R. A. Ilyas

This work aims to develop cornstarch (CS) based films using fructose (F), glycerol (G), and their combination (FG) as plasticizers with different ratios for food packaging applications. The findings showed that F-plasticized film had the lowest moisture content, highest crystallinity among all films, and exhibited the highest tensile strength and thermostability. In contrast, G-plasticized films showed the lowest density and water absorption with less crystallinity compared to the control and the other plasticized film. In addition, SEM results indicated that FG-plasticized films had a relatively smoother and more coherent surface among the tested films. The findings have also shown that varying the concentration of the plasticizers significantly affected the different properties of the plasticized films. Therefore, the selection of a suitable plasticizer at an appropriate concentration may significantly optimize film properties to promote the utilization of CS films for food packaging applications.


2021 ◽  
pp. 107258
Author(s):  
Jiao Wang ◽  
Xinyu Sun ◽  
Hui Zhang ◽  
Mengna Dong ◽  
Lihua Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document