Metamorphic graphite from Szendrőlád (Szendrő Mts., NE-Hungary) detected by simultaneous DTA-TG
AbstractGraphite, one of the polymorphic forms of carbon, has become a versatile industrial material of nowadays due to its particular attributes. It is used mainly in the automobile industry, metal extractive industry and in the high-tech industry. Moreover, it is also included in the list of critical raw materials for the EU. Our aim was to prove the presence of graphite by thermal analysis beyond X-ray powder diffraction (XRD) and Raman spectroscopy. Thermogravimetry yields comparable results with quantitative XRD. The formation conditions are described by Raman spectrometry and microscopy examinations of drill core samples from Szendrőlád (Szendrő Mts, NE-Hungary; (Szendrőlád Limestone Formation, middle-late Devonian, shelf-basin facies). Polished rock slabs were made for optical microscopy, scanning electron microscopy with energy dispersive spectrometry (SEM–EDS) and Raman spectroscopy. X-ray powder diffraction (XRD) and thermal analysis (DTA-TG) measurements were made on powders. Based on our results, the graphite is epigenetic; its quantity varies between 1.5–3 mass% in the samples. It was developed in 20–50 μm sized flakes, which are often arranged in > 300 μm sized aggregates. Graphite was formed during regional metamorphism from the organic matter-rich shales. The average formation temperature, calculated from the results of Raman spectroscopy, is around 410 °C (± 30 °C). The Raman measurements also indicated the presence of a partially graphitized (disordered graphite) material beside graphite.