scholarly journals Jacobi Ensemble, Hurwitz Numbers and Wilson Polynomials

2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Massimo Gisonni ◽  
Tamara Grava ◽  
Giulio Ruzza

AbstractWe express the topological expansion of the Jacobi Unitary Ensemble in terms of triple monotone Hurwitz numbers. This completes the combinatorial interpretation of the topological expansion of the classical unitary invariant matrix ensembles. We also provide effective formulæ for generating functions of multipoint correlators of the Jacobi Unitary Ensemble in terms of Wilson polynomials, generalizing the known relations between one point correlators and Wilson polynomials.

2020 ◽  
Vol 21 (10) ◽  
pp. 3285-3339
Author(s):  
Massimo Gisonni ◽  
Tamara Grava ◽  
Giulio Ruzza

Abstract We consider the Laguerre partition function and derive explicit generating functions for connected correlators with arbitrary integer powers of traces in terms of products of Hahn polynomials. It was recently proven in Cunden et al. (Ann. Inst. Henri Poincaré D, to appear) that correlators have a topological expansion in terms of weakly or strictly monotone Hurwitz numbers that can be explicitly computed from our formulae. As a second result, we identify the Laguerre partition function with only positive couplings and a special value of the parameter $$\alpha =-1/2$$ α = - 1 / 2 with the modified GUE partition function, which has recently been introduced in Dubrovin et al. (Hodge-GUE correspondence and the discrete KdV equation. arXiv:1612.02333) as a generating function for Hodge integrals. This identification provides a direct and new link between monotone Hurwitz numbers and Hodge integrals.


10.37236/7182 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
José L. Ramírez ◽  
Sergio N. Villamarin ◽  
Diego Villamizar

In this paper, we give a combinatorial interpretation of the $r$-Whitney-Eulerian numbers by means of coloured signed permutations. This sequence is a generalization of the well-known Eulerian numbers and it is connected to $r$-Whitney numbers of the second kind. Using generating functions, we provide some combinatorial identities and the log-concavity property. Finally, we show some basic congruences involving the $r$-Whitney-Eulerian numbers.


2017 ◽  
Vol 58 (8) ◽  
pp. 083503 ◽  
Author(s):  
Mathieu Guay-Paquet ◽  
J. Harnad

2019 ◽  
Vol 10 (01) ◽  
pp. 2150011
Author(s):  
Roger Van Peski

Koloğlu, Kopp and Miller compute the limiting spectral distribution of a certain class of real random matrix ensembles, known as [Formula: see text]-block circulant ensembles, and discover that it is exactly equal to the eigenvalue distribution of an [Formula: see text] Gaussian unitary ensemble. We give a simpler proof that under very general conditions which subsume the cases studied by Koloğlu–Kopp–Miller, real-symmetric ensembles with periodic diagonals always have limiting spectral distribution equal to the eigenvalue distribution of a finite Hermitian ensemble with Gaussian entries which is a ‘complex version’ of a [Formula: see text] submatrix of the ensemble. We also prove an essentially algebraic relation between certain periodic finite Hermitian ensembles with Gaussian entries, and the previous result may be seen as an asymptotic version of this for real-symmetric ensembles. The proofs show that this general correspondence between periodic random matrix ensembles and finite complex Hermitian ensembles is elementary and combinatorial in nature.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function for $k$-ary words avoiding any vincular pattern that has only ones. We also give generating functions for $k$-ary words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as well as the analogous results for compositions. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette méthode pour trouver la série génératrice pour les mots $k$-aires évitant les motifs vinculars consistant uniquement de uns. Nous présentons en suite les séries génératrices pour les mots $k$-aires évitant de façon cyclique les motifs vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous présentons aussi les résultats analogues pour les compositions.


1996 ◽  
Vol 48 (1) ◽  
pp. 43-63 ◽  
Author(s):  
Christian Berg ◽  
Mourad E. H. Ismail

AbstractWe use generating functions to express orthogonality relations in the form of q-beta. integrals. The integrand of such a q-beta. integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegö and leads naturally to the Al-Salam-Chihara polynomials then to the Askey-Wilson polynomials, the big q-Jacobi polynomials and the biorthogonal rational functions of Al-Salam and Verma, and some recent biorthogonal functions of Al-Salam and Ismail.


1992 ◽  
Vol 1 (1) ◽  
pp. 13-25 ◽  
Author(s):  
C. D. Godsil

In this work we show that that many of the basic results concerning the theory of the characteristic polynomial of a graph can be derived as easy consequences of a determinantal identity due to Jacobi. As well as improving known results, we are also able to derive a number of new ones. A combinatorial interpretation of the Christoffel-Darboux identity from the theory of orthogonal polynomials is also presented. Finally, we extend some work of Tutte on the reconstructibility of graphs with irreducible characteristic polynomials.


10.37236/5511 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Guillaume Chapuy ◽  
Wenjie Fang

We compute, for each genus $g\geq 0$, the generating function $L_g\equiv L_g(t;p_1,p_2,\dots)$ of (labelled) bipartite maps on the orientable surface of genus $g$, with control on all face degrees. We exhibit an explicit change of variables such that for each $g$, $L_g$ is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function $F_g$ of rooted bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet /Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result  complements recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of dessins d'enfants. Our proofs borrow some ideas from Eynard's "topological recursion" that he applied in particular to even-faced maps (unconventionally called "bipartite maps" in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series.


Sign in / Sign up

Export Citation Format

Share Document