topological recursion
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 27)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
A. Andreev ◽  
A. Popolitov ◽  
A. Sleptsov ◽  
A. Zhabin

AbstractWe investigate the structural constants of the KP hierarchy, which appear as universal coefficients in the paper of Natanzon–Zabrodin arXiv:1509.04472. It turns out that these constants have a combinatorial description in terms of transport coefficients in the theory of flow networks. Considering its properties we want to point out three novel directions of KP combinatorial structure research: connection with topological recursion, eigenvalue model for the structural constants and its deformations, possible deformations of KP hierarchy in terms of the structural constants. Firstly, in this paper we study the internal structure of these coefficients which involves: (1) construction of generating functions that have interesting properties by themselves; (2) restrictions on topological recursion initial data; (3) construction of integral representation or matrix model for these coefficients with non-trivial Ward identities. This shows that these coefficients appear in various problems of mathematical physics, which increases their value and significance. Secondly, we discuss their role in integrability of KP hierarchy considering possible deformation of these coefficients without changing the equations on $$\tau $$ τ -function. We consider several plausible deformations. While most failed even very basic checks, one deformation (involving Macdonald polynomials) passes all the simple checks and requires more thorough study.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Vincent Bouchard ◽  
Kento Osuga

AbstractWe introduce the notion of $${\mathcal {N}}=1$$ N = 1 abstract super loop equations and provide two equivalent ways of solving them. The first approach is a recursive formalism that can be thought of as a supersymmetric generalization of the Eynard–Orantin topological recursion, based on the geometry of a local super spectral curve. The second approach is based on the framework of super Airy structures. The resulting recursive formalism can be applied to compute correlation functions for a variety of examples related to 2d supergravity.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. Beccaria ◽  
A. Hasan

Abstract We consider U(N) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory and discuss how to extract the strong coupling limit of non-planar corrections to observables involving the $$ \frac{1}{2} $$ 1 2 -BPS Wilson loop. Our approach is based on a suitable saddle point treatment of the Eynard-Orantin topological recursion in the Gaussian matrix model. Working directly at strong coupling we avoid the usual procedure of first computing observables at finite planar coupling λ, order by order in 1/N, and then taking the λ ≫ 1 limit. In the proposed approach, matrix model multi-point resolvents take a simplified form and some structures of the genus expansion, hardly visible at low order, may be identified and rigorously proved. As a sample application, we consider the expectation value of multiple coincident circular supersymmetric Wilson loops as well as their correlator with single trace chiral operators. For these quantities we provide novel results about the structure of their genus expansion at large tension, generalising recent results in arXiv:2011.02885.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Oscar Brauer Gomez ◽  
Alexandr Buryak

Abstract The paper is devoted to the open topological recursion relations in genus 1, which are partial differential equations that conjecturally control open Gromov-Witten invariants in genus 1. We find an explicit formula for any solution analogous to the Dijkgraaf-Witten formula for a descendent Gromov-Witten potential in genus 1. We then prove that at the approximation up to genus 1 the exponent of an open descendent potential satisfies a system of explicitly constructed linear evolutionary PDEs with one spatial variable.


2020 ◽  
Vol 90 ◽  
pp. 103184
Author(s):  
B. Bychkov ◽  
P. Dunin-Barkowski ◽  
S. Shadrin

2020 ◽  
Vol 380 (2) ◽  
pp. 581-654
Author(s):  
Gaëtan Borot ◽  
Elba Garcia-Failde

Abstract We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorics of fully simple maps with topology of a disk or a cylinder. We show that the generating series of simple disks is given by the functional inversion of the generating series of ordinary disks. We also obtain an elegant formula for cylinders. These relations reproduce the relation between moments and (higher order) free cumulants established by Collins et al. [22], and implement the symplectic transformation $$x \leftrightarrow y$$ x ↔ y on the spectral curve in the context of topological recursion. We conjecture that the generating series of fully simple maps are computed by the topological recursion after exchange of x and y. We propose an argument to prove this statement conditionally to a mild version of the symplectic invariance for the 1-hermitian matrix model, which is believed to be true but has not been proved yet. Our conjecture can be considered as a combinatorial interpretation of the property of symplectic invariance of the topological recursion. Our argument relies on an (unconditional) matrix model interpretation of fully simple maps, via the formal hermitian matrix model with external field. We also deduce a universal relation between generating series of fully simple maps and of ordinary maps, which involves double monotone Hurwitz numbers. In particular, (ordinary) maps without internal faces—which are generated by the Gaussian Unitary Ensemble—and with boundary perimeters $$(\lambda _1,\ldots ,\lambda _n)$$ ( λ 1 , … , λ n ) are strictly monotone double Hurwitz numbers with ramifications $$\lambda $$ λ above $$\infty $$ ∞ and $$(2,\ldots ,2)$$ ( 2 , … , 2 ) above 0. Combining with a recent result of Dubrovin et al. [24], this implies an ELSV-like formula for these Hurwitz numbers.


2020 ◽  
Vol 380 (1) ◽  
pp. 449-522
Author(s):  
Vincent Bouchard ◽  
Paweł Ciosmak ◽  
Leszek Hadasz ◽  
Kento Osuga ◽  
Błażej Ruba ◽  
...  

Abstract We introduce super quantum Airy structures, which provide a supersymmetric generalization of quantum Airy structures. We prove that to a given super quantum Airy structure one can assign a unique set of free energies, which satisfy a supersymmetric generalization of the topological recursion. We reveal and discuss various properties of these supersymmetric structures, in particular their gauge transformations, classical limit, peculiar role of fermionic variables, and graphical representation of recursion relations. Furthermore, we present various examples of super quantum Airy structures, both finite-dimensional—which include well known superalgebras and super Frobenius algebras, and whose classification scheme we also discuss—as well as infinite-dimensional, that arise in the realm of vertex operator super algebras.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Ioana Coman ◽  
Elli Pomoni ◽  
Joerg Teschner

Abstract In this paper we investigate the relation between conformal blocks of Liouville CFT and the topological string partition functions of the rank one trinion theory T2. The partition functions exhibit jumps when passing from one chamber in the parameter space to another. Such jumps can be attributed to a change of the integration contour in the free field representation of Liouville conformal blocks. We compare the partition functions of the T2 theories representing trifundamental half hypermultiplets in N = 2, d = 4 field theories to the partition functions associated to bifundamental hypermultiplets. We find that both are related to the same Liouville conformal blocks up to inessential factors. In order to establish this picture we combine and compare results obtained using topological vertex techniques, matrix models and topological recursion. We furthermore check that the partition functions obtained by gluing two T2 vertices can be represented in terms of a four point Liouville conformal block. Our results indicate that the T2 vertex offers a useful starting point for developing an analog of the instanton calculus for SUSY gauge theories with trifundamental hypermultiplets.


Sign in / Sign up

Export Citation Format

Share Document