Resveratrol inhibits cell growth by inducing cell cycle arrest in activated hepatic stellate cells

2008 ◽  
Vol 315 (1-2) ◽  
pp. 1-7 ◽  
Author(s):  
Izabel C. Souza ◽  
Leo Anderson M. Martins ◽  
Barbara P. Coelho ◽  
Ivana Grivicich ◽  
Regina M. Guaragna ◽  
...  
2017 ◽  
Vol 95 (6) ◽  
pp. 628-633 ◽  
Author(s):  
Liang Wang ◽  
Guang Bai ◽  
Fei Chen

Bone marrow mesenchymal stem cells (BMSCs) have considerable therapeutic potential for the treatment of end-stage liver disease. Previous studies have demonstrated that BMSCs secrete growth factors and cytokines that inactivate hepatic stellate cells (HSCs), which inhibited the progression of hepatic fibrosis. The aim of this study was to determine the mechanism by which BMSCs suppress the function of HSCs in fibrosis. Our results showed that co-culture of BMSCs and HSCs induced cell cycle arrest at the G10/G1 phase and cell apoptosis of HSCs, which finally inhibited the cell proliferation of HSCs. Consistent with the cell cycle arrest, co-culture of BMSCs and HSCs increased the abundance of the cell cycle protein p27. Mechanistically, we further uncovered that following the co-culture with BMSCs, the expression level of the E3 ligase S-phase kinase-associated protein 2 (SKP2) that is responsible for the ubiquitination of p27 was decreased, which attenuated the ubiquitination of p27 and increased the stability of p27 in HSCs. Collectively, our results indicated the potential involvement of the SKP2–p27 axis for the inhibitory effect of BSMCs on the cell proliferation of HSCs.


2001 ◽  
Vol 276 (44) ◽  
pp. 40591-40598 ◽  
Author(s):  
Ki-Yong Kim ◽  
TaiYoun Rhim ◽  
Inpyo Choi ◽  
Soung-Soo Kim

2020 ◽  
Vol 19 (16) ◽  
pp. 2019-2033 ◽  
Author(s):  
Pratibha Pandey ◽  
Mohammad H. Siddiqui ◽  
Anu Behari ◽  
Vinay K. Kapoor ◽  
Kumudesh Mishra ◽  
...  

Background: The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood. Objective: The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA. Methods: Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining. Results: In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA. Conclusion: In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.


Sign in / Sign up

Export Citation Format

Share Document