scholarly journals Correction to: Indirect somatic embryogenesis of purple coneflower (Echinacea purpurea (L.) Moench): a medicinal‑ornamental plant: evaluation of antioxidant enzymes activity and histological study

2020 ◽  
Vol 47 (12) ◽  
pp. 10023-10023
Author(s):  
Maryam Dehestani‑Ardakani ◽  
Mohadeseh Hejazi ◽  
Kazem Kamali Aliabad
Planta Medica ◽  
2013 ◽  
Vol 79 (05) ◽  
Author(s):  
MT Khosravi ◽  
A Mehrafarin ◽  
H Naghdibadi ◽  
E Khosravi

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Dahanayake Nilanthi ◽  
Yue-Sheng Yang

Echinacea purpurea (purple coneflower) is being used for the preparation of more than 240 extracts, salves, and tinctures to help cure diseases like rabies, cold, and upper respiratory infections. Hence, efforts were made to develop a culture medium for successful in vitro culturing of cornflower and to regenerate buds and induce roots to enable mass propagation of selected clones. Of the three levels of sucrose tested as a supplement to MS media (Murashige and Skoog’s medium, 1962) 3% showed better rooting of buds and appeared morphologically normal and identical as compared to those grown at higher and lower concentrations (2 and 4%). The additives hydrolyzed lactabumin (0.0, 100, 300, and 900 mgL−1), peptone (0.0, 100, 300, and 900 mgL−1), and yeast (0.0, 100, 300, and 900 mgL−1) to media containing 0.3 mgL−1 BA (6-benzyladenine) and 0.01 mgL−1 NAA (naphthaleneacetic acid-plant growth regulators) has negatively influenced proliferation of shoots. The higher concentrations of the above have delayed the development of plantlets. Shoot multiplication was enhanced by coconut water with 2% being the best among 4 and 8% tested. Shoot organogenesis was not influenced by copper sulphate (0, 1.5, 3, 6, and 12 mgL−1) and silver nitrate (0.0, 0.5, 2.5, and 12.5 mgL−1) supplements and at higher concentrations of the above inhibited plant growth.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
J. Lema-Rumińska ◽  
K. Goncerzewicz ◽  
M. Gabriel

Having produced the embryos of cactusCopiapoa tenuissimaRitt. formamonstruosaat the globular stage and callus, we investigated the effect of abscisic acid (ABA) in the following concentrations: 0, 0.1, 1, 10, and 100 μM on successive stages of direct (DSE) and indirect somatic embryogenesis (ISE). In the indirect somatic embryogenesis process we also investigated a combined effect of ABA (0, 0.1, 1 μM) and sucrose (1, 3, 5%). The results showed that a low concentration of ABA (0-1 μM) stimulates the elongation of embryos at the globular stage and the number of correct embryos in direct somatic embryogenesis, while a high ABA concentration (10–100 μM) results in growth inhibition and turgor pressure loss of somatic embryos. The indirect somatic embryogenesis study in this cactus suggests that lower ABA concentrations enhance the increase in calli fresh weight, while a high concentration of 10 μM ABA or more changes calli color and decreases its proliferation rate. However, in the case of indirect somatic embryogenesis, ABA had no effect on the number of somatic embryos and their maturation. Nevertheless, we found a positive effect of sucrose concentration for both the number of somatic embryos and the increase in calli fresh weight.


Sign in / Sign up

Export Citation Format

Share Document