PotSpot: Participatory sensing based monitoring system for pothole detection using deep learning

Author(s):  
Susmita Patra ◽  
Asif Iqbal Middya ◽  
Sarbani Roy
Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1161
Author(s):  
Kuo-Hao Fanchiang ◽  
Yen-Chih Huang ◽  
Cheng-Chien Kuo

The safety of electric power networks depends on the health of the transformer. However, once a variety of transformer failure occurs, it will not only reduce the reliability of the power system but also cause major accidents and huge economic losses. Until now, many diagnosis methods have been proposed to monitor the operation of the transformer. Most of these methods cannot be detected and diagnosed online and are prone to noise interference and high maintenance cost that will cause obstacles to the real-time monitoring system of the transformer. This paper presents a full-time online fault monitoring system for cast-resin transformer and proposes an overheating fault diagnosis method based on infrared thermography (IRT) images. First, the normal and fault IRT images of the cast-resin transformer are collected by the proposed thermal camera monitoring system. Next is the model training for the Wasserstein Autoencoder Reconstruction (WAR) model and the Differential Image Classification (DIC) model. The differential image can be acquired by the calculation of pixel-wise absolute difference between real images and regenerated images. Finally, in the test phase, the well-trained WAR and DIC models are connected in series to form a module for fault diagnosis. Compared with the existing deep learning algorithms, the experimental results demonstrate the great advantages of the proposed model, which can obtain the comprehensive performance with lightweight, small storage size, rapid inference time and adequate diagnostic accuracy.


2021 ◽  
Vol 1828 (1) ◽  
pp. 012001
Author(s):  
Yeoh Keng Yik ◽  
Nurul Ezaila Alias ◽  
Yusmeeraz Yusof ◽  
Suhaila Isaak

Deep Learning technology can accurately predict the presence of diseases and pests in the agricultural farms. Upon this Machine learning algorithm, we can even predict accurately the chance of any disease and pest attacks in future For spraying the correct amount of fertilizer/pesticide to elimate host, the normal human monitoring system unable to predict accurately the total amount and ardent of pest and disease attack in farm. At the specified target area the artificial percepton tells the value accurately and give corrective measure and amount of fertilizers/ pesticides to be sprayed.


2019 ◽  
Author(s):  
Maria Galkin ◽  
Kashmala Rehman ◽  
Benjamin Schornstein ◽  
Warren Sunada-Wong ◽  
Harvey Wang

2021 ◽  
pp. 73-85
Author(s):  
Bharani Ujjaini Kempaiah ◽  
Ruben John Mampilli ◽  
K. S. Goutham

Sign in / Sign up

Export Citation Format

Share Document