Adequate nighttime lighting of city streets is necessary for safe vehicle and pedestrian movement, deterrent of crime, improvement of the citizens’ perceptions of safety, and so on. However, monitoring and mapping of illumination levels in city streets during the nighttime is a tedious activity that is usually based on manual inspection reports. The advancement in smartphone technology comes up with a better way to monitor city illumination using a rich set of smartphone-equipped inexpensive but powerful sensors (e.g., light sensor, GPS, etc). In this context, the main objective of this work is to use the power of smartphone sensors and IoT-cloud-based framework to collect, store, and analyze nighttime illumination data from citizens to generate high granular city illumination map. The development of high granular illumination map is an effective way of visualizing and assessing the illumination of city streets during nighttime. In this article, an illumination mapping algorithm called Street Illumination Mapping is proposed that works on participatory sensing-based illumination data collected using smartphones as IoT devices to generate city illumination map. The proposed method is evaluated on a real-world illumination dataset collected by participants in two different urban areas of city Kolkata. The results are also compared with the baseline mapping techniques, namely, Spatial k-Nearest Neighbors, Inverse Distance Weighting, Random Forest Regressor, Support Vector Regressor, and Artificial Neural Network.