Simple feature pyramid network for weakly supervised object localization using multi-scale information

Author(s):  
Bongyeong Koo ◽  
Han-Soo Choi ◽  
Myungjoo Kang
Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 955
Author(s):  
Chang Sun ◽  
Yibo Ai ◽  
Sheng Wang ◽  
Weidong Zhang

Weakly supervised object localization (WSOL) has attracted intense interest in computer vision for instance level annotations. As a hot research topic, a number of existing works concentrated on utilizing convolutional neural network (CNN)-based methods, which are powerful in extracting and representing features. The main challenge in CNN-based WSOL methods is to obtain features covering the entire target objects, not only the most discriminative object parts. To overcome this challenge and to improve the detection performance of feature extracting related WSOL methods, a CNN-based two-branch model was presented in this paper to locate objects using supervised learning. Our method contained two branches, including a detection branch and a self-attention branch. During the training process, the two branches interacted with each other by regarding the segmentation mask from the other branch as the pseudo ground truth labels of itself. Our model was able to focus on capturing the information of all the object parts due to the self-attention mechanism. Additionally, we embedded multi-scale detection into our two-branch method to output two-scale features. We evaluated our two-branch network on the CUB-200-2011 and VOC2007 datasets. The pointing localization, intersection over union (IoU) localization, and correct localization precision (CorLoc) results demonstrated competitive performance with other state-of-the-art methods in WSOL.


Author(s):  
Bo Wang ◽  
Chunfeng Yuan ◽  
Bing Li ◽  
Xinmiao Ding ◽  
Zeya Lia ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1820
Author(s):  
Xiaotao Shao ◽  
Qing Wang ◽  
Wei Yang ◽  
Yun Chen ◽  
Yi Xie ◽  
...  

The existing pedestrian detection algorithms cannot effectively extract features of heavily occluded targets which results in lower detection accuracy. To solve the heavy occlusion in crowds, we propose a multi-scale feature pyramid network based on ResNet (MFPN) to enhance the features of occluded targets and improve the detection accuracy. MFPN includes two modules, namely double feature pyramid network (FPN) integrated with ResNet (DFR) and repulsion loss of minimum (RLM). We propose the double FPN which improves the architecture to further enhance the semantic information and contours of occluded pedestrians, and provide a new way for feature extraction of occluded targets. The features extracted by our network can be more separated and clearer, especially those heavily occluded pedestrians. Repulsion loss is introduced to improve the loss function which can keep predicted boxes away from the ground truths of the unrelated targets. Experiments carried out on the public CrowdHuman dataset, we obtain 90.96% AP which yields the best performance, 5.16% AP gains compared to the FPN-ResNet50 baseline. Compared with the state-of-the-art works, the performance of the pedestrian detection system has been boosted with our method.


2020 ◽  
Vol 12 (5) ◽  
pp. 784 ◽  
Author(s):  
Wei Guo ◽  
Weihong Li ◽  
Weiguo Gong ◽  
Jinkai Cui

Multi-scale object detection is a basic challenge in computer vision. Although many advanced methods based on convolutional neural networks have succeeded in natural images, the progress in aerial images has been relatively slow mainly due to the considerably huge scale variations of objects and many densely distributed small objects. In this paper, considering that the semantic information of the small objects may be weakened or even disappear in the deeper layers of neural network, we propose a new detection framework called Extended Feature Pyramid Network (EFPN) for strengthening the information extraction ability of the neural network. In the EFPN, we first design the multi-branched dilated bottleneck (MBDB) module in the lateral connections to capture much more semantic information. Then, we further devise an attention pathway for better locating the objects. Finally, an augmented bottom-up pathway is conducted for making shallow layer information easier to spread and further improving performance. Moreover, we present an adaptive scale training strategy to enable the network to better recognize multi-scale objects. Meanwhile, we present a novel clustering method to achieve adaptive anchors and make the neural network better learn data features. Experiments on the public aerial datasets indicate that the presented method obtain state-of-the-art performance.


Sign in / Sign up

Export Citation Format

Share Document