scholarly journals Stability and periodicity in a mosquito population suppression model composed of two sub-models

Author(s):  
Zhongcai Zhu ◽  
Bo Zheng ◽  
Yantao Shi ◽  
Rong Yan ◽  
Jianshe Yu

AbstractIn this paper, we propose a mosquito population suppression model which is composed of two sub-models switching each other. We assume that the releases of sterile mosquitoes are periodic and impulsive, only sexually active sterile mosquitoes play a role in the mosquito population suppression process, and the survival probability is density-dependent. For the release waiting period T and the release amount c, we find three thresholds denoted by $$T^*$$ T ∗ , $$g^*$$ g ∗ , and $$c^*$$ c ∗ with $$c^*>g^*$$ c ∗ > g ∗ . We show that the origin is a globally or locally asymptotically stable equilibrium when $$c\ge c^*$$ c ≥ c ∗ and $$T\le T^*$$ T ≤ T ∗ , or $$c\in (g^*, c^*)$$ c ∈ ( g ∗ , c ∗ ) and $$T<T^*$$ T < T ∗ . We prove that the model generates a unique globally asymptotically stable T-periodic solution when either $$c\in (g^*, c^*)$$ c ∈ ( g ∗ , c ∗ ) and $$T=T^*$$ T = T ∗ , or $$c>g^*$$ c > g ∗ and $$T>T^*$$ T > T ∗ . Two numerical examples are provided to illustrate our theoretical results.

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Awad A. Bakery

We give in this work the sufficient conditions on the positive solutions of the difference equationxn+1=α+(xn-1m/xnk),  n=0,1,…, whereα,k, andm∈(0,∞)under positive initial conditionsx-1,  x0to be bounded,α-convergent, the equilibrium point to be globally asymptotically stable and that every positive solution converges to a prime two-periodic solution. Our results coincide with that known for the casesm=k=1of Amleh et al. (1999) andm=1of Hamza and Morsy (2009). We offer improving conditions in the case ofm=1of Gümüs and Öcalan (2012) and explain our results by some numerical examples with figures.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Mei Peng ◽  
Xing He ◽  
Junjian Huang ◽  
Tao Dong

Based on that the computer will be infected by infected computer and exposed computer, and some of the computers which are in suscepitible status and exposed status can get immunity by antivirus ability, a novel coumputer virus model is established. The dynamic behaviors of this model are investigated. First, the basic reproduction numberR0, which is a threshold of the computer virus spreading in internet, is determined. Second, this model has a virus-free equilibriumP0, which means that the infected part of the computer disappears, and the virus dies out, andP0is a globally asymptotically stable equilibrium ifR0<1. Third, ifR0>1then this model has only one viral equilibriumP*, which means that the computer persists at a constant endemic level, andP*is also globally asymptotically stable. Finally, some numerical examples are given to demonstrate the analytical results.


2019 ◽  
Vol 4 (2) ◽  
pp. 349 ◽  
Author(s):  
Oluwatayo Michael Ogunmiloro ◽  
Fatima Ohunene Abedo ◽  
Hammed Kareem

In this article, a Susceptible – Vaccinated – Infected – Recovered (SVIR) model is formulated and analysed using comprehensive mathematical techniques. The vaccination class is primarily considered as means of controlling the disease spread. The basic reproduction number (Ro) of the model is obtained, where it was shown that if Ro<1, at the model equilibrium solutions when infection is present and absent, the infection- free equilibrium is both locally and globally asymptotically stable. Also, if Ro>1, the endemic equilibrium solution is locally asymptotically stable. Furthermore, the analytical solution of the model was carried out using the Differential Transform Method (DTM) and Runge - Kutta fourth-order method. Numerical simulations were carried out to validate the theoretical results. 


2021 ◽  
Vol 31 (03) ◽  
pp. 2150050
Author(s):  
Demou Luo ◽  
Qiru Wang

Of concern is the global dynamics of a two-species Holling-II amensalism system with nonlinear growth rate. The existence and stability of trivial equilibrium, semi-trivial equilibria, interior equilibria and infinite singularity are studied. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, the global dynamics of the model is performed. Next, we incorporate Allee effect on the first species and offer a new analysis of equilibria and bifurcation discussion of the model. Finally, several numerical examples are performed to verify our theoretical results.


Author(s):  
B. El Boukari ◽  
N. Yousfi

In this work we investigate a new mathematical model that describes the interactions betweenCD4+ T cells, human immunodeficiency virus (HIV), immune response and therapy with two drugs.Also an intracellular delay is incorporated into the model to express the lag between the time thevirus contacts a target cell and the time the cell becomes actively infected. The model dynamicsis completely defined by the basic reproduction number R0. If R0 ≤ 1 the disease-free equilibriumis globally asymptotically stable, and if R0 > 1, two endemic steady states exist, and their localstability depends on value of R0. We show that the intracellular delay affects on value of R0 becausea larger intracellular delay can reduce the value of R0 to below one. Finally, numerical simulationsare presented to illustrate our theoretical results.


2017 ◽  
Vol 14 (1) ◽  
pp. 306-313
Author(s):  
Awad. A Bakery ◽  
Afaf. R. Abou Elmatty

We give here the sufficient conditions on the positive solutions of the difference equation xn+1 = α+M((xn−1)/xn), n = 0, 1, …, where M is an Orlicz function, α∈ (0, ∞) with arbitrary positive initials x−1, x0 to be bounded, α-convergent and the equilibrium point to be globally asymptotically stable. Finally we present the condition for which every positive solution converges to a prime two periodic solution. Our results coincide with that known for the cases M(x) = x in Ref. [3] and M(x) = xk, where k ∈ (0, ∞) in Ref. [7]. We have given the solution of open problem proposed in Ref. [7] about the existence of the positive solution which eventually alternates above and below equilibrium and converges to the equilibrium point. Some numerical examples with figures will be given to show our results.


Author(s):  
K. Gopalsamy

AbstractA set of easily verifiable sufficient conditions are obtained for the existence of a globally asymptotically stable periodic solution in a Lotka-Volterra system with periodic coefficients.


2012 ◽  
Vol 62 (3) ◽  
Author(s):  
G. Samanta

AbstractIn this paper, a two-species nonautonomous Lotka-Volterra model of population growth in a polluted environment is proposed. Global asymptotic behaviour of this model by constructing suitable bounded functions has been investigated. It is proved that each population for competition, predation and cooperation systems respectively is uniformly persistent (permanent) under appropriate conditions. Sufficient conditions are derived to confirm that if each of competition, predation and cooperation systems respectively admits a positive periodic solution, then it is globally asymptotically stable.


1991 ◽  
Vol 23 (2) ◽  
pp. 429-430 ◽  
Author(s):  
Richard R. Weber ◽  
Gideon Weiss

We show that the fluid approximation to Whittle's index policy for restless bandits has a globally asymptotically stable equilibrium point when the bandits move on just three states. It follows that in this case the index policy is asymptotic optimal.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Zhong Zhao ◽  
Xinyu Song

Chemostat model with pulsed input in a polluted environment is considered. By using the Floquet theorem, we find that the microorganism eradication periodic solution is globally asymptotically stable if the impulsive periodTis more than a critical value. At the same time, we can find that the nutrient and microorganism are permanent if the impulsive periodTis less than the critical value.


Sign in / Sign up

Export Citation Format

Share Document