Journal of Function Spaces
Latest Publications


TOTAL DOCUMENTS

1410
(FIVE YEARS 759)

H-INDEX

12
(FIVE YEARS 6)

Published By Hindawi Limited

2314-8888, 2314-8896

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Hongyan Guan ◽  
Jianju Li ◽  
Yan Hao

In this manuscript, two new classes of generalized weakly contractions are introduced and common fixed point results concerning the new contractions are proved in the context of rectangular b -metric spaces. Also, some examples are included to present the validity of our theorems. As an application, we provide the existence and uniqueness of solution of an integral equation.


2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Zhan jiang Ji

According to the definition of sequence shadowing property and regularly recurrent point in the inverse limit space, we introduce the concept of sequence shadowing property and regularly recurrent point in the double inverse limit space and study their dynamical properties. The following results are obtained: (1) Regularly recurrent point sets of the double shift map σ f ∘ σ g are equal to the double inverse limit space of the double self-map f ∘ g in the regularly recurrent point sets. (2) The double self-map f ∘ g has sequence shadowing property if and only if the double shift map σ f ∘ σ g has sequence shadowing property. Thus, the conclusions of sequence shadowing property and regularly recurrent point are generalized to the double inverse limit space.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xiaofeng Wang ◽  
Zhicheng Zeng

We introduce the BMO spaces and use them to characterize complex-valued functions f such that the big Hankel operators H f and H f ¯ are both bounded or compact from a weighted large Fock space F p ϕ into a weighted Lebesgue space L p ϕ when 1 ≤ p < ∞ .


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
R. Alshenawy ◽  
Navid Feroze ◽  
Ali Al-Alwan ◽  
Mahreen Saleem ◽  
Sahidul Islam

This study discusses the posterior estimation for the parameters of the Burr type II distribution (BIID). The informative and noninformative priors along with different loss functions have also been assumed for the posterior estimation. The applicability of the proposed distribution has also been discussed. The modeling capability of the proposed model has been compared with seven classes of the lifetime distributions using real data. The generalizations of Weibull, exponential, Rayleigh, gamma, log normal, Pareto, Maxwell, Levy, Laplace, inverse gamma, Gompertz, chi-square, inverse chi-square, half normal, and log-logistic distributions have been considered for the comparison. The comparison has been made based on different goodness-of-fit criteria, such as Akaike information criteria (AIC), Bayesian information criteria (BIC), and Kolmogorov-Smirnov (KS) test. Based on the results from the study, it can be suggested that the BIID can efficiently replace commonly used lifetime distributions and their modifications. The results under this model were comparable with different conventional/modified distributions having up to six parameters.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Lei Chen ◽  
Waqas Nazeer ◽  
Farman Ali ◽  
Thongchai Botmart ◽  
Sarah Mehfooz

In this research, by using a weighted fractional integral, we establish a midpoint version of Hermite-Hadamrad Fejér type inequality for η -convex function on a specific interval. To confirm the validity, we considered some special cases of our results and relate them with already existing results. It can be observed that several existing results are special cases of our presented results.


2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Malik Ali Raza ◽  
Syed Zakar Hussain Bukhari ◽  
Imtiaz Ahmed ◽  
Muhammad Ashfaq ◽  
Maryam Nazir

We study a new subclass of functions with symmetric points and derive an equivalent formulation of these functions in term of subordination. Moreover, we find coefficient estimates and discuss characterizations for functions belonging to this new class. We also obtain distortion and growth results. We relate our results with the existing literature of the subject.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Gopi Prasad ◽  
Hüseyin Işik

The aim is to present a new relational variant of fixed point result that generalizes various fixed point results of the existing theme for contractive type mappings. As an application, we solve a periodic boundary value problem and validate all assertions with the help of nontrivial examples. We also highlight the close connections of the fixed point results equipped with a binary relation to that of graph related metrical fixed point results. Radically, these investigations unify the theory of metrical fixed points for contractive type mappings.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Aftab Hussain ◽  
Umar Ishtiaq ◽  
Khalil Ahmed ◽  
Hamed Al-Sulami

In this manuscript, we coined pentagonal controlled fuzzy metric spaces and fuzzy controlled hexagonal metric space as generalizations of fuzzy triple controlled metric spaces and fuzzy extended hexagonal b-metric spaces. We use a control function in fuzzy controlled hexagonal metric space and introduce five noncomparable control functions in pentagonal controlled fuzzy metric spaces. In the scenario of pentagonal controlled fuzzy metric spaces, we prove the Banach fixed point theorem, which generalizes the Banach fixed point theorem for the aforementioned spaces. An example is offered to support our main point. We also presented an application to dynamic market equilibrium.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Adam Lecko ◽  
Gangadharan Murugusundaramoorthy ◽  
Srikandan Sivasubramanian

In the present exploration, the authors define and inspect a new class of functions that are regular in the unit disc D ≔ ς ∈ ℂ : ς < 1 , by using an adapted version of the interesting analytic formula offered by Robertson (unexploited) for starlike functions with respect to a boundary point by subordinating to an exponential function. Examples of some new subclasses are presented. Initial coefficient estimates are specified, and the familiar Fekete-Szegö inequality is obtained. Differential subordinations concerning these newly demarcated subclasses are also established.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Tao Yan ◽  
Javariya Hyder ◽  
Muhammad Saeed Akram ◽  
Ghulam Farid ◽  
Kamsing Nonlaopon

In this paper, we establish some upper bounds of the numerical radius of a bounded linear operator S defined on a complex Hilbert space with polar decomposition S = U ∣ S ∣ , involving generalized Aluthge transform. These bounds generalize some bounds of the numerical radius existing in the literature. Moreover, we consider particular cases of generalized Aluthge transform and give some examples where some upper bounds of numerical radius are computed and analyzed for certain operators.


Sign in / Sign up

Export Citation Format

Share Document