scholarly journals Gel Strength of Hydrophilic Matrix Tablets in Terms of In Vitro Robustness

Author(s):  
Seyedreza Goldoozian ◽  
Valentyn Mohylyuk ◽  
Andriy Dashevskiy ◽  
Roland Bodmeier

Abstract Purpose The purpose of this study was to correlate the gel strength of swollen matrix tablets with their in vitro robustness against agitation intensity and applied mechanical forces. Five commercial products, i.e. Glucophage®, Alfuzosin®, Tromphyllin®, Preductal® MR and Quetiapin® formulated as water-soluble/erodible matrix tablets were investigated. Methods Effect of agitation speed (50–150 rpm) on drug release, hydration/erosion and gel strength was investigated using USP paddle apparatus II. The gel strength of matrix tablets during dissolution at different conditions was characterized by a texture analyzer. Results Commercial tablets formulated with HPMC of higher viscosity, such as K15M or K100M, demonstrated the gel strength in swollen state >0.02 MPa. In this case, the release mechanism was predominantly diffusional and, therefore, not affected by stirring speed and mechanical stress. In contrast, the Quetiapin® matrix tablet, formulated with HPMC K 4 M in amount of approx. 25%, demonstrated the gel strength dropped below 0.02 MPa after 6 h of release. In this case, the drug was predominantly released via erosional mechanism and very susceptible to stirring speed. Conclusion Sufficient gel strength of swollen tablets is an important prerequisite for unchanged in vitro performance in consideration of mechanical stress.

2018 ◽  
Vol 63 (02) ◽  
pp. 37-47
Author(s):  
Vesna Petrovska Jovanovska ◽  
Ljupco Pejov ◽  
Aleksandra Petrovska ◽  
Sonja Ugarkovic ◽  
Maja Simonoska Crcarevska ◽  
...  

The purpose of this work was to formulate prolonged release matrix tablets with water soluble opioid drug (API) using different types of hydroxypropylmethyl cellulose (Methocel) as controlled release polymers. Methocel K100M was incorporated as intra-granular polymer (sample 1) along with Methocel K4M (sample 2) or Methocel K15M (sample 3) as extra-granular polymers. The final blends and tablets prepared by wet granulation process were fully characterized. Results showed that the polymer used extra-granularly significantly affects the tablet properties. By incorporation of Methocel extra granularly (samples 2 and 3), the hardness and tensile strength of the tablets increased and the total tablet porosity decreased. Sample 1, containing only Methocel K100M (intra granularly) has the lowest index of swelling and the fastest release of API probably due to the cross-linking of the polymer chains during the process of wet granulation. Also, the type of Methocel used extra-granularly (with different viscosity grade) was found to significantly affect the swelling ratio of the designed matrix systems and the drug release behavior. Sample 2 containing Methocel K4M extra-granularly has a lower index of swelling and faster release of API compared to sample 3. Considering the release mechanism, release data showed best fitting to the heuristic model proposed by Korsmeyer-Peppas. Two additional approaches were used for mathematical modeling of the release data in order to make them directly applicable for our experimental results. Keywords: matrix tablet, water soluble opioid drug, prolonged release, HPMC (Methocel)


Author(s):  
CHINNA ESWARAIAH M ◽  
JAYA S

Objective: The objective of the present study was to formulate the effervescent floating matrix tablet of metronidazole and to evaluate the effect of varying concentrations of hydrophilic polymers on drug release. Methods: Drug excipients interaction was studied by Fourier transform infrared spectrophotometer. The effervescent floating matrix tablets were prepared by direct compression technique using hydroxypropyl methylcellulose (HPMCK4) and xanthan gum alone and in combination as release retardants. Microcrystalline cellulose was used as diluent. Sodium bicarbonate was used as effervescent agent. The prepared matrix tablets were evaluated for their physicochemical parameters such as weight variation, hardness, friability, content uniformity, buoyancy time, and in vitro dissolution. Results: Micromeritic properties and post-compression parameters were evaluated and all the parameters were found within the acceptable limit. The drug release data were subjected to different models to evaluate release kinetics and mechanism of drug release. The matrix tablets prepared with xanthan gum and a mixture of xanthan gum and HPMCK4 were retarded the drug release up to 12 h. The release mechanism of metronidazole was evaluated on the basis of release exponent n value in Peppas model. The n value of the formulations ranged from 0.46 to 0.89 which indicated Case II transport and zero-order release. Conclusion: Floating matrix tablet is the simple, efficient, and economic method to sustain the release of metronidazole to eradicate Helicobacter pylori in peptic ulcer disease.


1970 ◽  
Vol 8 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Bishyajit Kumar Biswas ◽  
Abu Shara Shasur Rouf

The objective of this study was to develop a sustained release matrix tablet of aceclofenac usinghydroxypropyl methylcellulose (HPMC K15M and HPMC K100M CR) in various proportions as release controllingfactor by direct compression method. The powders for tableting were evaluated for angle of repose, loose bulkdensity, tapped bulk density, compressibility index, total porosity and drug content etc. The tablets were subjected tothickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolutionstudy was carried out for 24 hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus inphosphate buffer (pH 7.4). The granules showed satisfactory flow properties, compressibility index and drug contentetc. All the tablets complied with pharmacopoeial specifications. The results of dissolution studies indicated that theformulations F-2 and F-3 could extend the drug release up to 24 hours. By comparing the dissolution profiles with themarketed product, it revealed that the formulations exhibited similar drug release profile. From this study, a decreasein release kinetics of the drug was observed when the polymer concentration was increased. Kinetic modeling of invitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport toanomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. Thedrug release followed both diffusion and erosion mechanism in all cases. The drug release from these formulationswas satisfactory after 3 months storage in 40°C and 75% RH. Besides, this study explored the optimum concentrationand effect of polymer(s) on acelofenac release pattern from the tablet matrix for 24 hour period.Key words: Aceclofenac; sustained release; hydrophillic matrix; HPMC; direct compression.DOI: 10.3329/dujps.v8i1.5332Dhaka Univ. J. Pharm. Sci. 8(1): 23-30, 2009 (June)


2018 ◽  
Vol 6 (4) ◽  
pp. 12-20
Author(s):  
Kanke Pralhad

Disintegration control matrix tablet (DCMT) is a new approach for poorly water soluble drugs which successfully sustain the release up to 24hrs by controlling the disintegration rate of tablet. DCMT mainly forms the granules containing drug febuxostat and disintegrant sodium alginate which controls the release of febuxostat by controlling the rate of disintegration in wax coating plays an important role. The sustained release of drug is maintained by increasing the wax coating or decreasing the amount of disintegrant. The release of drug from tablet is uniform throughout till all the drug releases from tablet and it is justified by in-vitro dissolution studies. DCMT increases the solubility of drug and improves the bioavailability without disturbing gastrointestinal transit.


2020 ◽  
Vol 37 (11) ◽  
Author(s):  
Valentyn Mohylyuk ◽  
Seyedreza Goldoozian ◽  
Gavin P. Andrews ◽  
Andriy Dashevskiy

Abstract Purpose When establishing IVIVC, a special problem arises by interpretation of averaged in vivo profiles insight of considerable individual variations in term of time and number of mechanical stress events in GI-tract. The objective of the study was to investigate and forecast the effect of mechanical stress on in vivo behavior in human of hydrophilic matrix tablets. Methods Dissolution profiles for the marketed products were obtained at different conditions (stirring speed, single- or repeatable mechanical stress applied) and convoluted into C-t profiles. Vice versa, published in vivo C-t profiles of the products were deconvoluted into absorption profiles and compared with dissolution profiles by similarity factor. Results Investigated hydrophilic matrix tablets varied in term of their resistance against hydrodynamic stress or single stress during the dissolution. Different scenarios, including repeatable mechanical stress, were investigated on mostly prone Seroquel® XR 50 mg. None of the particular scenarios fits to the published in vivo C-t profile of Seroquel® XR 50 mg representing, however, the average of individual profiles related to scenarios differing by number, frequency and time of contraction stress. When different scenarios were combined in different proportions, the profiles became closer to the original in vivo profile including a burst between 4 and 5 h, probably, due to stress-events in GI-tract. Conclusion For establishing IVIVC of oral dosage forms susceptible mechanical stress, a comparison of the deconvoluted individual in vivo profiles with in vitro profiles of different dissolution scenarios can be recommended.


2020 ◽  
Vol 23 (1) ◽  
pp. 10-16
Author(s):  
Ramesh Kandel ◽  
Tushar Saha ◽  
Zia Uddin Masum ◽  
Jakir Ahmed Chowdhury

Fenofibrate, a water insoluble drug was used to prepare matrix tablet with four different viscosity grades of Hydroxypropyl Methylcellulose (HPMC) which were Methocel K4M CR, Methocel K15M CR, Methocel K100M CR and Methocel K100LV CR. The concentration of those excipients was 5, 10, 20, and 40% (w/w), respectively. The content of drug in a fixed quantity of powder in every formulation was ranged between 96.47 to 104.78 %. The dissolution study was done by using USP dissolution apparatus II. The kinetics of release was analyzed by using zero-order, first order, Korsmeyer-Peppas, Higuchi and Hixon-crowell equations to explain the drug release mechanism from the matrix tablets. In-vitro dissolution profile of matrix tablets were dependent upon the HPMC concentration and dissolution was rapid for tablets containing lower polymer proportion i.e. 5,10, and 20% Percentage (w/w) HPMC than those containing 40% (w/w) HPMC. Bangladesh Pharmaceutical Journal 23(1): 10-16, 2020


Author(s):  
S. JAYA ◽  
DIVYA S.

Objective: The purpose of present study was to formulate oral sustained release matrix tablet of metoclopramide hydrochloride and to evaluate the effect of varying concentrations of hydrophobic and hydrophilic polymers on drug release. Methods: Drug–excipients compatibility studies were carried out by using Fourier transform infrared spectroscopy (FTIR). The matrix tablets were prepared by direct compression technique using Xanthan gum and ethyl cellulose alone and in combination as release retardant. Dicalcium phosphate was used as diluent. The prepared matrix tablets were evaluated for their physicochemical parameters such as weight variation, hardness, friability, content uniformity and in vitro drug release studies were performed using USP-type II (paddle) dissolution apparatus. Results: Pre and post compression parameters were evaluated and all the parameters were found within the limit. The matrix tablets prepared with xanthan gum and combination of xanthan gum and ethyl cellulose were retarded the drug release upto 12 h. Ethyl cellulose alone could not control the drug release for 12 h. The Formulation with drug to xanthan gum (1:1.5), released 97.62 % of drug in 12 h. The kinetic treatment showed that the release of drug follows zero order kinetics (R 2=0.985). Korsmeyer and Peppas equation values of n were found to be in the range of 0.40-0.56, indicating that the drug release mechanism was diffusion. Conclusion: Matrix tablet is the simple, efficient and economic method to sustain the release of metoclopramide to prevent extrapyramidal side effects.


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


Author(s):  
Sarika Pundir ◽  
Ashutosh Badola

In the present study we have formulated (F1 to F6) matrix tablets of atenolol and indapamide for the management of hypertension. As in simultaneous estimation of these drugs it was found that a confined release can be formulated. In the formulation of SR matrix tablet by using different concentration of delayed release agent DCP and pregelatinized starch as disintegrant we prepared tablets by wet granulation method. For sustained release action HPMC polymers were used for film coating. Preformulation studies were performed prior to compression. The compressed SR matrix tablets were evaluated for weight variation, hardness, friability, drug content, disintegration time and in vitro drug release using USP dissolution apparatus type 2 (paddle). It was found that the optimized formulation showed 49.33%, 48.90%, 48.52%, 47.65%, 46.84% and 46.51% release for atenolol in 12 hours respectively. However, indapamide released 49.62%, 49.39%, 48.72%, 48.27%, 47.59% and 47.36% at the end of 12 hr. The IR spectrum study revealed that there is no disturbance in the principal peaks of pure drugs atenolol and indapamide. This confirms the integrity of pure drugs and no incompatibility of them with excipients. The stability studies were carried out for the optimized batch for one months and it showed satisfactory results. The kinetic studies of the formulations revealed that diffusion is the predominant mechanism of drug and release follows Zero-order, Super case II transport.


Sign in / Sign up

Export Citation Format

Share Document