scholarly journals A synthetic phytosiderophore analog, proline-2′-deoxymugineic acid, is efficiently utilized by dicots

2021 ◽  
Author(s):  
Daisei Ueno ◽  
Yuta Ito ◽  
Miho Ohnishi ◽  
Chikahiro Miyake ◽  
Takayuki Sohtome ◽  
...  

Abstract Purpose Phytosiderophores (PS) from grasses solubilize sparingly soluble iron (Fe), and the resultant PS-Fe is an Fe source even for dicots. Recently, the synthetic PS proline-2′-deoxymugineic acid (PDMA) has been developed as a moderately biodegradable Fe fertilizer for grasses. We aimed to investigate whether PDMA-Fe is also a good Fe source for dicots. Methods The availability of PDMA-Fe to cucumber was evaluated in a calcareous substrate and hydroponic cultures at pH 7.0–9.0 by determining chlorophyll level, PSII activity, and Fe uptake. EDDHA-Fe, EDTA-Fe, and citrate-Fe were used as controls. The reducibility of Fe chelates by roots was measured to determine the mechanism underlying differences in availability. Expressions of Fe deficiency-inducible genes were analyzed to estimate the Fe status in plants. Results The application of PDMA-Fe and EDDHA-Fe to a calcareous substrate reduced Fe-deficient chlorosis to a similar extent; however, the shoot Fe concentration was higher in the PDMA-Fe treatment. In the hydroponic culture, the availability of PDMA-Fe was higher than that of the other chelates at all pH levels, and this was confirmed by higher PSII activity and lower expression of Fe deficiency-inducible genes. The reducibility assay revealed that the reduction level of PDMA-Fe was greater than that of EDTA-Fe and citrate-Fe under alkaline pH. Conclusions PDMA-Fe is utilized by cucumber roots more efficiently than traditional synthetic chelates in both calcareous substrate and hydroponic cultures. The higher availability of PDMA-Fe may be attributed to its higher reducibility. Our findings suggest that PDMA-Fe could be a good Fe fertilizer for dicots.

2021 ◽  
Author(s):  
Daisei Ueno ◽  
Yuta Ito ◽  
Miho Ohnishi ◽  
Chikahiro Miyake ◽  
Takayuki Sohtome ◽  
...  

Abstract Purpose: Phytosiderophores (PS) from grasses solubilize sparingly soluble iron (Fe), and the resultant PS-Fe is an Fe source, even for dicots. Recently, the synthetic PS proline-2′-deoxymugineic acid (PDMA) has been developed as a moderately biodegradable Fe fertilizer for grasses. We aimed to investigate whether PDMA-Fe is also a good Fe source for dicots.Methods: The availability of PDMA-Fe to cucumber was evaluated in calcareous soil and hydroponic cultures under pH 7.0–9.0 by determining chlorophyll concentration, PSII activity, and Fe uptake. EDDHA-Fe, EDTA-Fe, and citrate-Fe were used as controls. The reducibility of Fe chelates by roots was measured to determine the mechanism underlying differences in availability. Expressions of Fe deficiency-inducible genes (CsFRO1 and CsIRT1) were analyzed to estimate the Fe status in plants. Results: Application of PDMA-Fe and EDDHA-Fe to calcareous soil reduced Fe-deficient chlorosis to a similar extent; however, shoot Fe concentration was higher in the PDMA-Fe treatment. In the hydroponic culture, PDMA-Fe had higher availability than the other chelates at every pH, which was confirmed by higher PSII activity and lower expression of Fe deficiency-inducible genes. The reducibility assay revealed that the reduction level of PDMA-Fe was greater than that of EDTA-Fe and citrate-Fe under alkaline pH.Conclusion: PDMA-Fe is utilized by cucumber roots more efficiently than traditional synthetic chelates in both calcareous soil and hydroponic cultures. The higher availability of PDMA-Fe may be attributed to its higher reducibility. Our findings suggest that PDMA-Fe could be a good Fe fertilizer for dicots.


2010 ◽  
Vol 167 (8) ◽  
pp. 666-669 ◽  
Author(s):  
Gianpiero Vigani ◽  
Graziano Zocchi
Keyword(s):  

2003 ◽  
Vol 23 (2) ◽  
pp. 677-686 ◽  
Author(s):  
Teresa M. Lamb ◽  
Aaron P. Mitchell

ABSTRACT Environmental pH changes have broad consequences for growth and differentiation. The best-understood eukaryotic pH response pathway acts through the zinc-finger transcription factor PacC of Aspergillus nidulans, which activates alkaline pH-induced genes directly. We show here that Saccharomyces cerevisiae Rim101p, the pH response regulator homologous to PacC, functions as a repressor in vivo. Chromatin immunoprecipitation assays show that Rim101p is associated in vivo with the promoters of seven Rim101p-repressed genes. A reporter gene containing deduced Rim101p binding sites is negatively regulated by Rim101p and is associated with Rim101p in vivo. Deletion mutations of the Rim101p repression targets NRG1 and SMP1 suppress rim101Δ mutant defects in ion tolerance, haploid invasive growth, and sporulation. Therefore, transcriptional repression is the main biological function of Rim101p. The Rim101p repression target Nrg1p is in turn required for repression of two alkaline pH-inducible genes, including the Na+ pump gene ENA1, which is required for ion tolerance. Thus, Nrg1p, a known transcriptional repressor, functions as an inhibitor of alkaline pH responses. Our findings stand in contrast to the well-characterized function of PacC as a direct activator of alkaline pH-induced genes yet explain many aspects of Rim101p and PacC function in other organisms.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Eva Smoleňová ◽  
Richard Pokorný ◽  
Michal Kaliňák ◽  
Tibor Liptaj ◽  
Martin Šimkovič ◽  
...  

AbstractThe ability of Trichoderma strains isolated from lignite and of Earth surface-derived strains to attack (solubilise) lignite, peat and wood was compared using glutamate as a carbon source. The results showed that lignite-derived microorganisms solubilise lignite to similar extent as Trichoderma strains isolated from the Earth surface. Solubilisation processes involve the action of enzymes and alkaline pH. The solubilisation of lignite was accompanied by a small increase of conidia-bound laccase, whereas that of peat was accompanied by (secretion) activity of cellulase, laminarinase, laccase, and lignin-peroxidase-like enzyme. In addition, data were obtained which show that bacteria contained in the lignite are able of lignite solubilisation and utilisation.


Author(s):  
Takanori Kobayashi ◽  
Atsushi J Nagano ◽  
Naoko K Nishizawa

Abstract Under low iron (Fe) availability, plants transcriptionally induce various genes responsible for Fe uptake and translocation to obtain adequate amounts of Fe. Although transcription factors and ubiquitin ligases involved in these Fe deficiency responses have been identified, the mechanisms coordinating these pathways have not been clarified in rice. Recently identified Fe-deficiency-inducible IRON MAN (IMA)/FE UPTAKE-INDUCING PEPTIDE (FEP) positively regulates many Fe-deficiency-inducible genes for Fe uptake in Arabidopsis. Here, we report that the expression of two IMA/FEP genes in rice, OsIMA1 and OsIMA2, is strongly induced under Fe deficiency, positively regulated by the transcription factors IDEF1, OsbHLH058, and OsbHLH059, as well as OsIMA1 and OsIMA2 themselves, and negatively regulated by HRZ ubiquitin ligases. Overexpression of OsIMA1 or OsIMA2 in rice conferred tolerance to Fe deficiency and accumulation of Fe in leaves and seeds. These OsIMA-overexpressing rice exhibited enhanced expression of all of the known Fe-deficiency-inducible genes involved in Fe uptake and translocation, except for OsYSL2, a Fe–nicotianamine transporter gene, in roots but not in leaves. Knockdown of OsIMA1 or OsIMA2 caused minor effects, including repression of some Fe uptake- and translocation-related genes in OsIMA1 knockdown roots. These results indicate that OsIMA1 and OsIMA2 play key roles in enhancing the major pathway of the Fe deficiency response in rice.


PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0189827 ◽  
Author(s):  
Nobuharu Fujii ◽  
Sachiko Miyabayashi ◽  
Tomoki Sugita ◽  
Akie Kobayashi ◽  
Chiaki Yamazaki ◽  
...  

2015 ◽  
Vol 14 (2) ◽  
pp. 61-69 ◽  
Author(s):  
Cornelia Gerdenitsch ◽  
Bettina Kubicek ◽  
Christian Korunka

Supported by media technologies, today’s employees can increasingly decide when and where to work. The present study examines positive and negative aspects of this temporal and spatial flexibility, and the perceptions of control in these situations based on propositions of self-determination theory. Using an exploratory approach we conducted semi-structured interviews with 45 working digital natives. Participants described positive and negative situations separately for temporal and spatial flexibility, and rated the extent to which they felt autonomous and externally controlled. Situations appraised positively were best described by decision latitude, while negatively evaluated ones were best described by work–nonwork conflict. Positive situations were perceived as autonomous rather than externally controlled; negative situations were rated as autonomously and externally controlled to a similar extent.


2014 ◽  
Vol 23 (03) ◽  
pp. 207-211
Author(s):  
C. Kasch ◽  
A. Osterberg ◽  
Thordis Granitzka ◽  
T. Lindner ◽  
M. Haenle ◽  
...  

SummaryThe RANK/RANKL/OPG system plays an important role in the regulation of bone metabolism and bony integration around implants. The aim of this study was to analyse gene expression of OPG, RANK, and RANKL in regenerating bone during implant integration. Additionally, the effect of intermittent para - thyroid hormone (PTH) treatment was analysed. A titanium chamber was implanted in the proximal tibiae of 48 female rats. The animals received either human PTH or saline solution (NaCl). After 21 and 42 days, RNA was isolated from tissue adjacent to the implant and expression of RANK, RANKL, and OPG was analysed. After 21 days, very low expression levels of all genes were shown. In contrast, increased gene expression after 42 days was determined. Expression of RANK and RANKL was lower than that for OPG. The lower expression levels after 21 days might be due to still ossifying, fibrotic tissue around the titanium chamber. An increased OPG synthesis rate associated with decreased RANKL expression after 42 days revealed bone-forming processes. Despite significant differences in gene expression between the time points, only slight differences were observed between application of intermittent PTH and NaCl after a period of 42 days.


Sign in / Sign up

Export Citation Format

Share Document