Global optimality condition for quadratic optimization problems under data uncertainty

Positivity ◽  
2021 ◽  
Author(s):  
Moussa Barro ◽  
Ali Ouedraogo ◽  
Sado Traore
2017 ◽  
Vol 27 (2) ◽  
pp. 219-225
Author(s):  
Sudipta Roy ◽  
Sandip Chatterjee ◽  
R.N. Mukherjee

In this paper the duality and optimality of a class of constrained convex quadratic optimization problems have been studied. Furthermore, the global optimality condition of a class of interval quadratic minimization problems has also been discussed.


2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Jutamas Kerdkaew ◽  
Rabian Wangkeeree ◽  
Rattanaporn Wangkeeree

<p style='text-indent:20px;'>In this paper, a robust optimization problem, which features a maximum function of continuously differentiable functions as its objective function, is investigated. Some new conditions for a robust KKT point, which is a robust feasible solution that satisfies the robust KKT condition, to be a global robust optimal solution of the uncertain optimization problem, which may have many local robust optimal solutions that are not global, are established. The obtained conditions make use of underestimators, which were first introduced by Jayakumar and Srisatkunarajah [<xref ref-type="bibr" rid="b1">1</xref>,<xref ref-type="bibr" rid="b2">2</xref>] of the Lagrangian associated with the problem at the robust KKT point. Furthermore, we also investigate the Wolfe type robust duality between the smooth uncertain optimization problem and its uncertain dual problem by proving the sufficient conditions for a weak duality and a strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. The results on robust duality theorems are established in terms of underestimators. Additionally, to illustrate or support this study, some examples are presented.</p>


Author(s):  
Alexander Murray ◽  
Timm Faulwasser ◽  
Veit Hagenmeyer ◽  
Mario E. Villanueva ◽  
Boris Houska

AbstractThis paper presents a novel partially distributed outer approximation algorithm, named PaDOA, for solving a class of structured mixed integer convex programming problems to global optimality. The proposed scheme uses an iterative outer approximation method for coupled mixed integer optimization problems with separable convex objective functions, affine coupling constraints, and compact domain. PaDOA proceeds by alternating between solving large-scale structured mixed-integer linear programming problems and partially decoupled mixed-integer nonlinear programming subproblems that comprise much fewer integer variables. We establish conditions under which PaDOA converges to global minimizers after a finite number of iterations and verify these properties with an application to thermostatically controlled loads and to mixed-integer regression.


Sign in / Sign up

Export Citation Format

Share Document