Positivity
Latest Publications


TOTAL DOCUMENTS

1140
(FIVE YEARS 222)

H-INDEX

17
(FIVE YEARS 4)

Published By Springer-Verlag

1572-9281, 1385-1292

Positivity ◽  
2021 ◽  
Author(s):  
Youssef Azouzi ◽  
Kawtar Ramdane
Keyword(s):  

Positivity ◽  
2021 ◽  
Author(s):  
T. Hauser

AbstractIn the context of partially ordered vector spaces one encounters different sorts of order convergence and order topologies. This article investigates these notions and their relations. In particular, we study and relate the order topology presented by Floyd, Vulikh and Dobbertin, the order bound topology studied by Namioka and the concept of order convergence given in the works of Abramovich, Sirotkin, Wolk and Vulikh. We prove that the considered topologies disagree for all infinite dimensional Archimedean vector lattices that contain order units. For reflexive Banach spaces equipped with ice cream cones we show that the order topology, the order bound topology and the norm topology agree and that order convergence is equivalent to norm convergence.


Positivity ◽  
2021 ◽  
Author(s):  
Anke Kalauch ◽  
Janko Stennder ◽  
Onno van Gaans

AbstractWe focus on two topics that are related to moduli of elements in partially ordered vector spaces. First, we relate operators that preserve moduli to generalized notions of lattice homomorphisms, such as Riesz homomorphisms, Riesz* homomorphisms, and positive disjointness preserving operators. We also consider complete Riesz homomorphisms, which generalize order continuous lattice homomorphisms. Second, we characterize elements with a modulus by means of disjoint elements and apply this result to obtain moduli of functionals and operators in various settings. On spaces of continuous functions, we identify those differences of Riesz* homomorphisms that have a modulus. Many of our results for pre-Riesz spaces of continuous functions lead to results on order unit spaces, where the functional representation is used.


Author(s):  
Jochen Glück ◽  
Andrii Mironchenko

AbstractWe prove new characterisations of exponential stability for positive linear discrete-time systems in ordered Banach spaces, in terms of small-gain conditions. Such conditions have played an important role in the finite-dimensional systems theory, but are relatively unexplored in the infinite-dimensional setting, yet. Our results are applicable to discrete-time systems in ordered Banach spaces that have a normal and generating positive cone. Moreover, we show that our stability criteria can be considerably simplified if the cone has non-empty interior or if the operator under consideration is quasi-compact. To place our results into context we include an overview of known stability criteria for linear (and not necessarily positive) operators and provide full proofs for several folklore characterizations from this domain.


Positivity ◽  
2021 ◽  
Author(s):  
Abdullah Bin Abu Baker ◽  
Rahul Maurya
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document