scholarly journals Effects of partial replacement of red by green light in the growth spectrum on photomorphogenesis and photosynthesis in tomato plants

Author(s):  
Magdalena Trojak ◽  
Ernest Skowron ◽  
Tomasz Sobala ◽  
Maciej Kocurek ◽  
Jan Pałyga

AbstractThe artificial light used in growth chambers is usually devoid of green (G) light, which is considered to be less photosynthetically efficient than blue (B) or red (R) light. To verify the role of G light supplementation in the spectrum, we modified the RB spectrum by progressively replacing R light with an equal amount of G light. The tomato plants were cultivated under 100 µmol m–2 s–1 of five different combinations of R (35–75%) and G light (0–40%) in the presence of a fixed proportion of B light (25%) provided by light-emitting diodes (LEDs). Substituting G light for R altered the plant’s morphology and partitioning of biomass. We observed a decrease in the dry biomass of leaves, which was associated with increased biomass accumulation and the length of the roots. Moreover, plants previously grown under the RGB spectrum more efficiently utilized the B light that was applied to assess the effective quantum yield of photosystem II, as well as the G light when estimated with CO2 fixation using RB + G light-response curves. At the same time, the inclusion of G light in the growth spectrum reduced stomatal conductance (gs), transpiration (E) and altered stomatal traits, thus improving water-use efficiency. Besides this, the increasing contribution of G light in place of R light in the growth spectrum resulted in the progressive accumulation of phytochrome interacting factor 5, along with a lowered level of chalcone synthase and anthocyanins. However, the plants grown at 40% G light exhibited a decreased net photosynthetic rate (Pn), and consequently, a reduced dry biomass accumulation, accompanied by morphological and molecular traits related to shade-avoidance syndrome.

2018 ◽  
Vol 12 (04) ◽  
pp. 583-591 ◽  
Author(s):  
Thaísa Muriel Mioranza ◽  
◽  
Adriano Mitio Inagaki ◽  
Mônica Anghinoni Müller ◽  
José Renato Stangarlin ◽  
...  

Planta ◽  
1993 ◽  
Vol 189 (2) ◽  
Author(s):  
E. �gren ◽  
J.R. Evans

2006 ◽  
Vol 30 (4) ◽  
pp. 670-678 ◽  
Author(s):  
Rafael Vasconcelos Ribeiro ◽  
Eduardo Caruso Machado ◽  
Ricardo Ferraz de Oliveira

This study aimed to evaluate the response of photosynthesis (A), given by photosynthetic O2 evolution, to increasing temperature from 25 to 50ºC in sweet orange (Citrus sinensis (L.) Osbeck) leaf discs under non-photorespiring conditions. In order to evaluate the response of gross photosynthesis to temperature and the balance between photosynthetic and respiratory activities, respiration (Rd) rates were also measured, i.e. the O2 uptake in each temperature. In addition, light response curves of photosynthesis were performed by varying the photosynthetic photon flux density (PPFD) from 0 to 1160 µmol m-2 s-1 at 25 and 40ºC. The highest A values were observed at 35 and 40ºC, whereas the highest Rd values were noticed at 50ºC. A higher relationship A/Rd was found at 30 and 35ºC, suggesting an optimum temperature of 35ºC when considering the balance between photosynthesis and respiration under non-photorespiring condition. Overall, heat effects on plant metabolism were more evident when evaluating the relationship A/Rd. In light response curves, higher A values were also found at 40ºC under PPFD higher than 300 µmol m-2 s-1. Light saturation point of photosynthesis was increased at 40ºC, without significant change of quantum efficiency under low PPFD. Respiration was also enhanced at 40ºC, and as a consequence, the light compensation point increased. The better photosynthetic performance at 35-40ºC was supported by higher photochemical efficiency in both light and temperature response curves. The temperature-dependence of photosynthesis was affected by growth temperature, i.e. a high air temperature during plant growth is a probable factor leading to a higher photosynthetic tolerance to heat stress.


2020 ◽  
Vol 47 (7) ◽  
pp. 639
Author(s):  
Roberta Paradiso ◽  
Pieter H. B. de Visser ◽  
Carmen Arena ◽  
Leo F. M. Marcelis

We investigated the light response of leaf photosynthesis, stomatal conductance and optical properties in rose plants grown in a glasshouse with bending technique. Leaves were lighted from the adaxial or the abaxial side during measurements, performed in four positions in the upright and bent shoots: top leaves, middle leaves, bottom leaves, and bent shoot leaves. Moreover, the effect of the irradiation on the adaxial or abaxial leaf side on whole canopy photosynthesis was estimated through model simulation. No significant differences were found in light transmission, reflection and absorption of leaves and in photosynthesis light response curves among the four positions. In all the leaf positions, light absorption, stomatal conductance and photosynthesis were higher when leaves were lighted from the adaxial compared with the abaxial side. The model showed that a substantial part of the light absorbed by the crop originated from light reflected from the greenhouse floor, and thus the abaxial leaf properties have impact on whole crop light absorbance and photosynthesis. Simulations were performed for crops with leaf area index (LAI) 1, 2 and 3. Simulation at LAI 1 showed the highest reduction of simulated crop photosynthesis considering abaxial properties; however, to a lesser extent photosynthesis was also reduced at LAI 2 and 3. The overall results showed that the model may be helpful in designing crop systems for improved light utilisation by changing lamp position or level of leaf bending and pruning.


1995 ◽  
Vol 22 (1) ◽  
pp. 1 ◽  
Author(s):  
HG Jones ◽  
DO Hall ◽  
JE Corlett ◽  
A Massacci

When field-grown sorghum (Sorghum bicolor (L.) Moench) and millet (Pennisetum americanum (L.) Leeke) plants are subjected to drought, the speed of stomatal closure in response to darkness is enhanced in comparison with the speed observed in well-irrigated control plants. This shade-induced closure is most apparent at early stages of desiccation and is not rapidly reversible. These results need to be considered when developing protocols for the measurement of photosynthetic light response curves in the field. The sensitivity to crop water status of this stomatal closure response potentially provides a very valuable means for detection of the early stages of soil drying, and may also provide opportunities for screening different varieties for their adaptation to drought conditions.


Sign in / Sign up

Export Citation Format

Share Document