response curves
Recently Published Documents


TOTAL DOCUMENTS

4086
(FIVE YEARS 607)

H-INDEX

102
(FIVE YEARS 8)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261960
Author(s):  
Ana Laura López-Serrano ◽  
Rodrigo Zamora-Cárdenas ◽  
Iván A. Aréchiga-Figueroa ◽  
Pedro D. Salazar-Fajardo ◽  
Tania Ferrer ◽  
...  

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the ‘relaxation’ property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


2022 ◽  
Author(s):  
Bradford D. Loucas ◽  
Igor Shuryak ◽  
Stephen R. Kunkel ◽  
Michael N. Cornforth

The relationship between certain chromosomal aberration (CA) types and cell lethality is well established. On that basis we used multi-fluor in situ hybridization (mFISH) to tally the number of mitotic human lymphocytes exposed to graded doses of gamma rays that carried either lethal or nonlethal CA types. Despite the fact that a number of nonlethal complex exchanges were observed, the cells containing them were seldom deemed viable, due to coincident lethal chromosome damage. We considered two model variants for describing the dose responses. The first assumes independent linear-quadratic (LQ) dose response shapes for the yields of both lethal and nonlethal CAs. The second (simplified) variant assumes that the mean number of nonlethal CAs per cell is proportional to the mean number of lethal CAs per cell, meaning that the shapes and magnitudes of both aberration types differ only by a multiplicative proportionality constant. Using these models allowed us to assemble dose response curves for the frequency of aberration-bearing cells that would be expected to survive. This took the form of a joint probability distribution for cells containing ≥1 nonlethal CAs but having zero lethal CAs. The simplified second model variant turned out to be marginally better supported than the first, and the joint probability distribution based on this model yielded a crescent-shaped dose response reminiscent of those observed for mutagenesis and transformation for cells “at risk” (i.e. not corrected for survival). Among the implications of these findings is the suggestion that similarly shaped curves form the basis for deriving metrics associated with radiation risk models.


2022 ◽  
Author(s):  
Jintao Wang ◽  
Robert Boenish ◽  
Yunkai Li ◽  
Xinjun Chen

Abstract Climate change is proving to be a driving factor reshaping the distribution and altering the movement of marine species, dynamics of which are crucial for sustainable development and marine resources management. However, how Pacific Ocean squids – boasting the salient biological features of a one-year life span and strong adaptive abilities, and which support more than 25% of global squid catches – respond to climate change is overlooked. We address this knowledge gap by constructing spatio-temporal generalized additive mixed models based on hundreds of thousands of digitized Chinese squid-jigging logbooks covering three Pacific stocks of two squid species (Ommastrephes bartramii and Dosidicus gigas) spanning 2005 – 2018. Here we show the relationships between environmental variables and local abundance of squids (reflected by response curves) track changes in climate; the squid biomass peaks and troughs coinciding with La Niña and El Niño events, respectively are moderate in contrast to the effects of directional climate change. We find substantial poleward shifts by squids inhabiting low latitude and middle latitudes. These findings have broad implications both for food security and open ocean ecosystem dynamics.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 79
Author(s):  
Haoxiang Zhao ◽  
Xiaoqing Xian ◽  
Zihua Zhao ◽  
Guifen Zhang ◽  
Wanxue Liu ◽  
...  

Helicoverpa zea, a well-documented and endemic pest throughout most of the Americas, affecting more than 100 species of host plants. It is a quarantine pest according to the Asia and Pacific Plant Protection Commission (APPPC) and the catalog of quarantine pests for plants imported to the People’s Republic of China. Based on 1781 global distribution records of H. zea and eight bioclimatic variables, the potential geographical distributions (PGDs) of H. zea were predicted by using a calibrated MaxEnt model. The contribution rate of bioclimatic variables and the jackknife method were integrated to assess the significant variables governing the PGDs. The response curves of bioclimatic variables were quantitatively determined to predict the PGDs of H. zea under climate change. The results showed that: (1) four out of the eight variables contributed the most to the model performance, namely, mean diurnal range (bio2), precipitation seasonality (bio15), precipitation of the driest quarter (bio17) and precipitation of the warmest quarter (bio18); (2) PGDs of H. zea under the current climate covered 418.15 × 104 km2, and were large in China; and (3) future climate change will facilitate the expansion of PGDs for H. zea under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 in both the 2030s and 2050s. The conversion of unsuitable to low suitability habitat and moderately to high suitability habitat increased by 8.43% and 2.35%, respectively. From the present day to the 2030s, under SSP1-2.6, SSP2-4.5 and SSP5-8.5, the centroid of the suitable habitats of H. zea showed a general tendency to move eastward; from 2030s to the 2050s, under SSP1-2.6 and SSP5-8.5, it moved southward, and it moved slightly northward under SSP2-4.5. According to bioclimatic conditions, H. zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to host plants and containers of H. zea and should exchange information to strengthen plant quarantine and pest monitoring, thus enhancing target management.


2022 ◽  
Vol 12 ◽  
Author(s):  
Min Lyu ◽  
Mengke Sun ◽  
Josep Peñuelas ◽  
Jordi Sardans ◽  
Jun Sun ◽  
...  

Climate change could negatively alter plant ecosystems if rising temperatures exceed optimal conditions for obtaining carbon. The acclimation of plants to higher temperatures could mitigate this effect, but the potential of subtropical forests to acclimate still requires elucidation. We used space-for-time substitution to determine the photosynthetic and respiratory-temperature response curves, optimal temperature of photosynthesis (Topt), photosynthetic rate at Topt, temperature sensitivity (Q10), and the rate of respiration at a standard temperature of 25°C (R25) for Pinus taiwanensis at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis leaves to temperature at the five elevations followed parabolic curves, and the response of respiration to temperature increased with temperature. Topt was higher in summer than winter at each elevation and decreased significantly with increasing elevation. Q10 decreased significantly with increasing elevation in summer but not winter. These results showed a strong thermal acclimation of foliar photosynthesis and respiration to current temperatures across elevations and seasons, and that R25 increased significantly with elevation and were higher in winter than summer at each elevation indicating that the global warming can decrease R25. These results strongly suggest that this thermal acclimation will likely occur in the coming decades under climate change, so the increase in respiration rates of P. taiwanensis in response to climatic warming may be smaller than predicted and thus may not increase atmospheric CO2 concentrations.


MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 303-306
Author(s):  
Y. R. KENJLE ◽  
M. C. VARSHNEYA ◽  
T. R. U. NAIDU

ABSTRACT. The diurnal variation of rate of photosynthesis (l') with photosynthetic photon flux density (PPFD) model of light response curves and the relationship between PPFD and P were studied for two postmonsoon (rabi) sorghum genotypes, viz.. M35- I and RSV-9R under field conditions at Pune. The half maximal values. i.e., PPFD level at which P=Pmax/2 obtained were 1251 and 937 umolm-2s-1 for M35-l and RSV.9R respectively. The potential rates of photosynthesis were 65,79 and 64.52  umolm-2S-1 whereas the observed maximum rates of photosynthesis were lower. 40.93 and 46.66 umolm-2s-1 in M35-1 and RSV-9R Respectively, due to effect of air temperatures under the field conditions, n1e maximum rate of photosynthesis determined from the model decreased with delay in the sowing of the crop. Correlation coefficients between PPFD and rate of photosynthesis were 0,794 and 0,708 for M35-1 and RSV-9R respectively. The PPFD received and rate of photosynthesis decreased significantly with delay in sorghum sowing.    


2022 ◽  
Vol 154 ◽  
Author(s):  
Desh Deepak Chaudhary ◽  
Bhupendra Kumar ◽  
Geetanjali Mishra ◽  
Omkar

Abstract In the present study, we assessed functional response curves of two generalist coccinellid beetles (Coleoptera: Coccinellidae), specifically Menochilus sexmaculatus and Propylea dissecta, using fluctuating densities of aphid prey as a stimulus. In what may be the first such study, we investigated how the prey density experienced during the early larval development of these two predatory beetle species shaped the functional response curves of the late instar–larval and adult stages. The predators were switched from their rearing prey-density environments of scarce, optimal, or abundant prey to five testing density environments of extremely scarce, scarce, suboptimal, optimal, or abundant prey. The individuals of M. sexmaculatus that were reared on either scarce- and optimal- or abundant-prey densities exhibited type II functional response curves as both larvae and adults. However, individuals of P. dissecta that were reared on scarce- and abundant-prey densities displayed modified type II functional response curves as larvae and type II functional response curves as adults. In contrast, individuals of P. dissecta reared on the optimal-prey density displayed type II functional response curves as larvae and modified type II functional response curves as adults. The fourth-instar larvae and adult females of M. sexmaculatus and P. dissecta also exhibited highest prey consumption (T/Th) and shortest prey-handling time (Th) on the scarce-prey rearing density. Thus, under fluctuating-prey conditions, M. sexmaculatus is a better biological control agent of aphids than P. dissecta is.


2022 ◽  
Vol 17 (01) ◽  
pp. P01014
Author(s):  
E. Mirrezaei ◽  
S. Setayeshi ◽  
F. Zakeri ◽  
S. Baradaran

Abstract Ionizing radiation is extensively utilized in various applications; however, it can lead to significant harm to living systems. In this regard, the radiation absorbed dose is usually evaluated by performing biological dosimetry and physical reconstruction of exposure scenarios. But, this is costly, time-consuming, and maybe impractical for a biodosimetry lab to perform biological dosimetry. This study aimed to assess the applicability and reliability of the Geant4-DNA toolkit as a simulation approach to construct a reliable dose-response curve for biodosimetry purposes as an appropriate substitution for experimental measurements. In this matter, the total number of double-strand breaks (DSBs), due to different doses of low LET radiation qualities on DNA molecules, was calculated and converted to the values of dicentric chromosomes using a mechanistic model of cellular response. Then, the number of dicentric chromosomes induced by 200 kVp X-rays were modified by using a semi-empirical scaling factor for compensating the restriction of simulation code to consider what can happen in a real cell. Next, the trend of dicentrics for 137Cs and 60Co were calculated and modified by the above scaling factor. Finally, the dose-response curves for these gamma sources compared to several published experiments. The suggested calibration curves for 137Cs and 60Co followed a linear quadratic equation: Ydic = 0.0054 (± 0.0133) - 0.0089 (± 0.0212) × D + 0.0568 (± 0.0051) × D2 and Ydic = 0.0052 (± 0.0128) - 0.00568 (± 0.0203) × D + 0.0525 (± 0.0049) × D2 respectively. They revealed a satisfactory agreement with the experimental data reported by others. The Geant4 program developed in this work could provide an appropriate tool for predicting the dose-response (calibration) curve for biodosimetry purposes.


2022 ◽  
Author(s):  
Tamás Vermes ◽  
Mark Kielpinski ◽  
Thomas Henkel ◽  
Miquel A. Pericàs ◽  
Esther Alza ◽  
...  

A fully automated microfluidic system was developed to screen for novel anti-HBV capsid assembly modulators. High-resolution dose–response curves were generated using convection-dominated Taylor–Aris dispersion of the screening compounds.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012046
Author(s):  
Xiancai Ren ◽  
Zhaobo Meng ◽  
Xin Wang ◽  
Feifei Gao ◽  
Ting Zhang

Abstract In order to study the seismic performance of ancient wooden structures with single eaves and beam lifting in China, the finite element model of the upper floor of the south gate of Jiangzhang town in Shanxi Province was established by using ANSYS. Through modal analysis, the main frequencies and modes of the south gate of Jiangduan were obtained. Through the seismic response analysis of the south gate tower model, the displacement and acceleration response curves of the top nodes of the outer eaves column, golden column and through column under various working conditions of the South gate tower are obtained. The results show that the first and second order frequencies of the South Gate tower model are 1.830Hz and 1.855Hz, and the first two order modes are mainly transitional. With the increase of seismic excitation, the displacement and acceleration response of the top joints of the outer eave column, golden column and through column increase.


Sign in / Sign up

Export Citation Format

Share Document