A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation

2007 ◽  
Vol 3 (5) ◽  
pp. 219-227 ◽  
Author(s):  
Yeong Hee Cho ◽  
Yusuke Kawakami
2012 ◽  
Vol 584 ◽  
pp. 531-535 ◽  
Author(s):  
Rajendra Deshmukh ◽  
Sanmesh Parab ◽  
Manoj Malik

The effect on the electrical characteristics of poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate – co – butyl acrylate) (PMMABA) containing liquid crystal (E8) as dispersed material, is investigated in terms of electro optical and dielectric relaxation spectroscopy (DRS) technique. This polymer dispersed liquid crystal (PDLC) composite film is sandwiched between two glass slides with a transparent conductive substrate such as indium tin oxide (ITO). The resulting assembly forms an electro-sensitive material that can be switched from a OFF state to a ON state by the application of an external electric field or thermal ramp. In the present investigation PMMA / E8, PMMABA / E8 and PMMA+PMMABA / E8 composite films of 30/70 wt / wt % were prepared by Solution Induced Phase Separation (SIPS) method. Morphological study showed that homogeneous LC phase is embedded in a spongy – like polymer matrix. Electro optical behavior was determined under the condition of an externally applied AC electric field (0-200Vp-p, 50-1000Hz). DRS has been carried out in the frequency range from 20 Hz to 20 MHz and over the temperature range from 24°C to 75°C.The interfacial charge layer effect and qualitative evaluation of distribution of relaxation time is characterized by Cole-Cole model.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 732
Author(s):  
Anna P. Gardymova ◽  
Mikhail N. Krakhalev ◽  
Victor Ya. Zyryanov ◽  
Alexandra A. Gruzdenko ◽  
Andrey A. Alekseev ◽  
...  

The electro-optical properties of polymer dispersed liquid crystal (PDLC) films are highly dependent on the features of the contained liquid crystal (LC) droplets. Cholesteric LC droplets with homeotropic boundaries can form several topologically different orientational structures, including ones with single and more point defects, layer-like, and axisymmetric twisted toroidal structures. These structures are very sensitive to an applied electric field. In this work, we have demonstrated experimentally and by computer simulations that twisted toroidal droplets reveal strong structural response to the electric field. In turn, this leads to vivid changes in the optical texture in crossed polarizers. The response of droplets of different sizes were found to be equivalent in terms of dimensionless parameters. In addition, the explanation of this phenomenon showed a comparison of theoretical and experimental structural response curves aids to determine the shape of the droplet. Finally, we demonstrated that the addition of a dichroic dye allows such films to be used as optical filters with adjustable color even without polarizers.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jordan K. Ando ◽  
Peter J. Collings

A lyotropic chromonic liquid crystal consists of oriented molecular assemblies in solution. If the molecules are chiral, the helical pattern of orientational order is revealed by the stripes seen with polarized optical microscopy.


1994 ◽  
Vol 33 (Part 1, No. 5A) ◽  
pp. 2641-2647 ◽  
Author(s):  
Vasilii G. Nazarenko ◽  
Seshu Sarala ◽  
Nelamangala V. Madhusudana

2008 ◽  
Vol 2008 ◽  
pp. 1-52 ◽  
Author(s):  
Y. J. Liu ◽  
X. W. Sun

By combining polymer-dispersed liquid crystal (PDLC) and holography, holographic PDLC (H-PDLC) has emerged as a new composite material for switchable or tunable optical devices. Generally, H-PDLC structures are created in a liquid crystal cell filled with polymer-dispersed liquid crystal materials by recording the interference pattern generated by two or more coherent laser beams which is a fast and single-step fabrication. With a relatively ideal phase separation between liquid crystals and polymers, periodic refractive index profile is formed in the cell and thus light can be diffracted. Under a suitable electric field, the light diffraction behavior disappears due to the index matching between liquid crystals and polymers. H-PDLCs show a fast switching time due to the small size of the liquid crystal droplets. So far, H-PDLCs have been applied in many promising applications in photonics, such as flat panel displays, switchable gratings, switchable lasers, switchable microlenses, and switchable photonic crystals. In this paper, we review the current state-of-the-art of H-PDLCs including the materials used to date, the grating formation dynamics and simulations, the optimization of electro-optical properties, the photonic applications, and the issues existed in H-PDLCs.


Sign in / Sign up

Export Citation Format

Share Document