Effect of Solid-Solution Second-Phase Particles on the Austenite Grain Growth Behavior in Nb-Ti High-Strength if Steel

2020 ◽  
Vol 52 (4) ◽  
pp. 539-547
Author(s):  
H. M. Zhang ◽  
R. Chen ◽  
H. B. Jia ◽  
Y. Li ◽  
Z. Y. Jiang
Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1473
Author(s):  
Hao Wang ◽  
Yanping Bao ◽  
Chengyi Duan ◽  
Lu Lu ◽  
Yan Liu ◽  
...  

The influence of rare earth Ce on the deep stamping property of high-strength interstitial-free (IF) steel containing phosphorus was analyzed. After adding 120 kg ferrocerium alloy (Ce content is 10%) in the steel, the inclusion statistics and the two-dimensional morphology of the samples in the direction of 1/4 thickness of slab and each rolling process were observed and compared by scanning electron microscope (SEM). After the samples in each rolling process were treated by acid leaching, the three-dimensional morphology and components of the second phase precipitates were observed by SEM and energy dispersive spectrometer (EDS). The microstructure of the sample was observed by optical microscope, and the grain size was compared. Meanwhile, the content and strength of the favorable texture were analyzed by X-ray diffraction (XRD). Finally, the mechanical properties of the product were analyzed. The results showed that: (1) The combination of rare earth Ce with activity O and S in steel had lower Gibbs free energy, and it was easy to generate CeAlO3, Ce2O2S, and Ce2O3. The inclusions size was obviously reduced, but the number of inclusions was increased after adding rare earth. The morphology of inclusions changed from chain and strip to spherical. The size of rare earth inclusions was mostly about 2–5 μm, distributed and dispersed, and their elastic modulus was close to that of steel matrix, which was conducive to improving the structure continuity of steel. (2) The rare earth compound had a high melting point. As a heterogeneous nucleation point, the nucleation rate was increased and the solidification structure was refined. The grade of grain size of products was increased by 1.5 grades, which is helpful to improve the strength and plasticity of metal. (3) Rare earth Ce can inhibit the segregation of P element at the grain boundary and the precipitation of Fe(Nb+Ti)P phase. It can effectively increase the solid solution amount of P element in steel, improve the solid solution strengthening effect of P element in high-strength IF steel, and obtain a large proportion of {111} favorable texture, which is conducive to improving the stamping formability index r90 value.


2011 ◽  
Vol 189-193 ◽  
pp. 2869-2874 ◽  
Author(s):  
Wen Zhong Song ◽  
Qi Fang ◽  
Hui Ping Ren ◽  
Zi Li Jin ◽  
Hui Chang

The solid solution of the second phase particle and austenite grain growth behavior of the high niobium-containing RE steel was studied by mathematical calculation and extraction replica technique. The purpose of the study was to investigate the effects of Rare Earth La on austenite grain growth and propose an empirical equation for predicting the austenite grain size of RE steel. Austenite grain grows in an exponential law with the increase of heating temperature, while approximately in a parabolic law with the increase of holding time. Results show that the RE steel has good anti-coarsening ability at elevated temperatures. When soaking temperature is lower than 1250°C , AGS and growth rate are small for high niobium steel, but soaking temperature is lower than 1220°C , AGS and growth rate are small for RE steel. RE La can promote solid solution of second-phase particles Nb(C, N), the solution temperature decrease 30°C than high niobium steel.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1004 ◽  
Author(s):  
Xianguang Zhang ◽  
Kiyotaka Matsuura ◽  
Munekazu Ohno

The occurrence of abnormal grain growth (AGG) of austenite during annealing is a serious problem in steels with carbide and/or nitride particles, which should be avoided from a viewpoint of mechanical properties. The effects of cold deformation prior to annealing on the occurrence of AGG have been investigated. It was found that the temperature range of the occurrence of AGG is shifted toward a low temperature region by cold deformation, and that the shift increases with the increase of the reduction ratio. The lowered AGG occurrence temperature is attributed to the fine and near-equilibrium AlN particles that are precipitated in the cold-deformed steel, which is readily dissolved during annealing. In contrast, coarse and non-equilibrium AlN particles precipitated in the undeformed steel, which is resistant to dissolution during annealing.


2005 ◽  
Vol 495-497 ◽  
pp. 423-428 ◽  
Author(s):  
Q.W. Jiang ◽  
E.B. Zhao ◽  
J.G. Zhang ◽  
Y. Chen ◽  
Gang Wang ◽  
...  

The microstructure of Ti+P IF steel were studied after warm rolling, cold rolling and recrystallization using X-Ray, TEM and SEM. The results show that the characteristics of warm rolled sheet are the same as that of the cold rolled, but the texture displays different characteristics in the subsequent cold rolling and recrystallization because of the numerous second-phase particles. In this work, a Ti+P IF steel sheet with high strength and plastic strain ratio was obtained.


2013 ◽  
Vol 5 ◽  
pp. 762890 ◽  
Author(s):  
Lin Wang ◽  
Dongsheng Qian ◽  
Jun Guo ◽  
Yan Pan

Sign in / Sign up

Export Citation Format

Share Document