Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy

2013 ◽  
Vol 27 (10) ◽  
pp. 3679-3696 ◽  
Author(s):  
Sabah S. Fayaed ◽  
Ahmed El-Shafie ◽  
Othman Jaafar
2011 ◽  
Vol 42 (1) ◽  
pp. 50-67 ◽  
Author(s):  
A. H. El-Shafie ◽  
M. S. El-Manadely

Developing optimal release policies of multipurpose reservoirs is very complex, especially for reservoirs within a stochastic environment. Existing techniques are limited in their ability to represent risks associated with deciding a release policy. The risk aspect of the decisions affects the design and operation of reservoirs. A decision-making model is presented that is capable of replicating the manner in which risks associated with reservoir release decisions are perceived, interpreted and compared by a decision-maker. The model is based on Neural Network (NN) theory. This decision-making model can be used with a Stochastic Dynamic Programming (SDP) approach to produce a NN-SDP model. The resulting integrated model allows the attitudes towards risk of a decision-maker to be considered explicitly in defining the optimal release policy. Clear differences in the policies generated from the basic SDP and the NN-SDP models are observed when examining the operation of Aswan High Dam (AHD). The NN-SDP model yields policies that are more reliable and resilient and less vulnerable than those obtained using the SDP model.


2019 ◽  
Vol 11 (19) ◽  
pp. 5367 ◽  
Author(s):  
Fayaed ◽  
Fiyadh ◽  
Khai ◽  
Ahmed ◽  
Afan ◽  
...  

The simulation elevation-surface area-storage interrelationship of a reservoir is a crucial task in developing ideal water release policies for reservoir and dam operations. In this study, an inclusive (stochastic dynamic programming-artificial neural network (SDP-ANN)) model was established and applied to obtain an ideal reservoir operation strategy for Sg. Langat reservoir in Malaysia. The problems associated with the management of water resources mostly relate to uncertainty and the stochastic nature of the reservoir inflow, and the SDP-ANN model is meant to consider uncertainty in the input parameters such as reservoir inflow and reservoir evaporation losses. The performance of the SDP-ANN model was compared to that of the stochastic dynamic programming-autoregression (AR) model. The primary aim of the model is to decrease the squared deviation from the desired water release, which we determined by comparing the SDP-AR and SDP-ANN model performances. The results indicate that the SDP-ANN model demonstrated greater resilience and reliability with a lower supply deficit. Consequently, the case study results confirm that the SDP-ANN model performs better than the SDP-AR model in obtaining the best parameters for the reservoir operation. Specifically, a comparison of the models shows that the proposed Model 2 increased the reliability and resilience of the system by 7.5% and 6.3%, respectively.


2015 ◽  
Vol 46 (5) ◽  
pp. 689-704 ◽  
Author(s):  
Sabah S. Fayaed ◽  
Ahmed El-Shafie ◽  
Humod Mosad Alsulami ◽  
Othman Jaafar ◽  
Muhammad Mukhlisin ◽  
...  

In this paper, a comprehensive modified stochastic dynamic programing with artificial neural network (MSDP-ANN) model is developed and applied to derive optimal operational strategies for a reservoir. Most water resource problems involve uncertainty. To show that the MSDP-ANN model addresses uncertainty in the input variable, the result of the MSDP-ANN model is compared with the performance of a detailed conventional stochastic dynamic programing with regression analysis (CSDP-RA) model. The computational time of the CSDP-ANN model is modified with concave objective functions by deriving a monotonic relationship between the reservoir storage and optimal release decision, and an algorithm is proposed to improve the computational efficiency of reservoir operation. Various indices (i.e. reliability, vulnerability, and resiliency) were calculated to assess the model performance. After comparing the performance of the CSDP-RA model with that of the MSDP-ANN model, it was observed that the MSDP-ANN model produces a more reliable and resilient model and a smaller supply deficit. Thus, it can be concluded that the MSDP-ANN model performs better than the CSDP-RA model in deriving the optimal operating policy for the reservoir.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document