Real-world PM2.5 exposure induces pathological injury and DNA damage associated with miRNAs and DNA methylation alteration in rat lungs

Author(s):  
Lifang Zhao ◽  
Mei Zhang ◽  
Lirong Bai ◽  
Yufei Zhao ◽  
Zongwei Cai ◽  
...  
2021 ◽  
Author(s):  
Antoine Canat ◽  
Adeline Veillet ◽  
Robert Illingworth ◽  
Emmanuelle Fabre ◽  
Pierre Therizols

AbstractDNA methylation is essential for heterochromatin formation and repression of DNA repeat transcription, both of which are essential for genome integrity. Loss of DNA methylation is associated with disease, including cancer, but is also required for development. Alternative pathways to maintain heterochromatin are thus needed to limit DNA damage accumulation. Here, we find that DAXX, an H3.3 chaperone, protects pericentromeric heterochromatin and is essential for embryonic stem cells (ESCs) maintenance in the ground-state of pluripotency. Upon DNA demethylation-mediated damage, DAXX relocalizes to pericentromeric regions, and recruits PML and SETDB1, thereby promoting heterochromatin formation. In the absence of DAXX, the 3D-architecture and physical properties of pericentric heterochromatin are disrupted, resulting in derepression of major satellite DNA. Using epigenome editing tools, we demonstrate that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX and H3.3 unite DNA damage response and heterochromatin maintenance in ESCs.


2021 ◽  
Author(s):  
Ye-Eun Han ◽  
Nak-Hyeon Choi ◽  
Mi Jin Cho ◽  
Min Gu Kang ◽  
Young-Youl Kim

2020 ◽  
Vol 189 ◽  
pp. 109975 ◽  
Author(s):  
Melissa Rosa de Souza ◽  
Paula Rohr ◽  
Vivian Francília Silva Kahl ◽  
Kátia Kvitko ◽  
Mónica Cappetta ◽  
...  

Epigenetics ◽  
2019 ◽  
Vol 15 (1-2) ◽  
pp. 199-214 ◽  
Author(s):  
Boyang Zhang ◽  
Liye Zhu ◽  
Yaqi Dai ◽  
Hongyu Li ◽  
Kunlun Huang ◽  
...  

2020 ◽  
Vol 26 (3) ◽  
pp. 141-153
Author(s):  
Minhao Hu ◽  
Yiyun Lou ◽  
Shuyuan Liu ◽  
Yuchan Mao ◽  
Fang Le ◽  
...  

Abstract Our previous study revealed a higher incidence of gene dynamic mutation in newborns conceived by IVF, highlighting that IVF may be disruptive to the DNA stability of IVF offspring. However, the underlying mechanisms remain unclear. The DNA damage repair system plays an essential role in gene dynamic mutation and neurodegenerative disease. To evaluate the long-term impact of IVF on DNA damage repair genes, we established an IVF mouse model and analyzed gene and protein expression levels of MSH2, MSH3, MSH6, MLH1, PMS2, OGG1, APEX1, XPA and RPA1 and also the amount of H2AX phosphorylation of serine 139 which is highly suggestive of DNA double-strand break (γH2AX expression level) in the brain tissue of IVF conceived mice and their DNA methylation status using quantitative real-time PCR, western blotting and pyrosequencing. Furthermore, we assessed the capacity of two specific non-physiological factors in IVF procedures during preimplantation development. The results demonstrated that the expression and methylation levels of some DNA damage repair genes in the brain tissue of IVF mice were significantly changed at 3 weeks, 10 weeks and 1.5 years of age, when compared with the in vivo control group. In support of mouse model findings, oxygen concentration of in vitro culture environment was shown to have the capacity to modulate gene expression and DNA methylation levels of some DNA damage repair genes. In summary, our study indicated that IVF could bring about long-term alterations of gene and protein expression and DNA methylation levels of some DNA damage repair genes in the brain tissue and these alterations might be resulted from the different oxygen concentration of culture environment, providing valuable perspectives to improve the safety and efficiency of IVF at early embryonic stage and also throughout different life stages.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 225 ◽  
Author(s):  
Zhongliang Jiang ◽  
Yanhao Lai ◽  
Jill M. Beaver ◽  
Pawlos S. Tsegay ◽  
Ming-Lang Zhao ◽  
...  

DNA damage and base excision repair (BER) are actively involved in the modulation of DNA methylation and demethylation. However, the underlying molecular mechanisms remain unclear. In this study, we seek to understand the mechanisms by exploring the effects of oxidative DNA damage on the DNA methylation pattern of the tumor suppressor breast cancer 1 (BRCA1) gene in the human embryonic kidney (HEK) HEK293H cells. We found that oxidative DNA damage simultaneously induced DNA demethylation and generation of new methylation sites at the CpGs located at the promoter and transcribed regions of the gene ranging from −189 to +27 in human cells. We demonstrated that DNA damage-induced demethylation was mediated by nucleotide misincorporation by DNA polymerase β (pol β). Surprisingly, we found that the generation of new DNA methylation sites was mediated by coordination between pol β and the de novo DNA methyltransferase, DNA methyltransferase 3b (DNMT3b), through the interaction between the two enzymes in the promoter and encoding regions of the BRCA1 gene. Our study provides the first evidence that oxidative DNA damage can cause dynamic changes in DNA methylation in the BRCA1 gene through the crosstalk between BER and de novo DNA methylation.


2015 ◽  
Vol 2015 (1) ◽  
pp. 1771
Author(s):  
Wilfried Karmaus ◽  
Vitaliy Vdovenko ◽  
Gabrielle A Lockett ◽  
Yeugenia I Stepanova ◽  
John W. Holloway

Sign in / Sign up

Export Citation Format

Share Document