embryonic stem cells
Recently Published Documents


TOTAL DOCUMENTS

10697
(FIVE YEARS 1005)

H-INDEX

259
(FIVE YEARS 17)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Bret Sanders ◽  
Daniel D’Andrea ◽  
Mark O. Collins ◽  
Elliott Rees ◽  
Tom G. J. Steward ◽  
...  

AbstractCoordinated programs of gene expression drive brain development. It is unclear which transcriptional programs, in which cell-types, are affected in neuropsychiatric disorders such as schizophrenia. Here we integrate human genetics with transcriptomic data from differentiation of human embryonic stem cells into cortical excitatory neurons. We identify transcriptional programs expressed during early neurogenesis in vitro and in human foetal cortex that are down-regulated in DLG2−/− lines. Down-regulation impacted neuronal differentiation and maturation, impairing migration, morphology and action potential generation. Genetic variation in these programs is associated with neuropsychiatric disorders and cognitive function, with associated variants predominantly concentrated in loss-of-function intolerant genes. Neurogenic programs also overlap schizophrenia GWAS enrichment previously identified in mature excitatory neurons, suggesting that pathways active during prenatal cortical development may also be associated with mature neuronal dysfunction. Our data from human embryonic stem cells, when combined with analysis of available foetal cortical gene expression data, de novo rare variants and GWAS statistics for neuropsychiatric disorders and cognition, reveal a convergence on transcriptional programs regulating excitatory cortical neurogenesis.


Biology Open ◽  
2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvie Franck ◽  
Edouard Couvreu De Deckersberg ◽  
Jodi L. Bubenik ◽  
Christina Markouli ◽  
Lise Barbé ◽  
...  

ABSTRACT Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262277
Author(s):  
Takamasa Ito ◽  
Musashi Kubiura-Ichimaru ◽  
Yuri Murakami ◽  
Aaron B. Bogutz ◽  
Louis Lefebvre ◽  
...  

DNA methylation (DNAme; 5-methylcytosine, 5mC) plays an essential role in mammalian development, and the 5mC profile is regulated by a balance of opposing enzymatic activities: DNA methyltransferases (DNMTs) and Ten-eleven translocation dioxygenases (TETs). In mouse embryonic stem cells (ESCs), de novo DNAme by DNMT3 family enzymes, demethylation by the TET-mediated conversion of 5mC to 5-hydroxymethylation (5hmC), and maintenance of the remaining DNAme by DNMT1 are actively repeated throughout cell cycles, dynamically forming a constant 5mC profile. Nevertheless, the detailed mechanism and physiological significance of this active cyclic DNA modification in mouse ESCs remain unclear. Here by visualizing the localization of DNA modifications on metaphase chromosomes and comparing whole-genome methylation profiles before and after the mid-S phase in ESCs lacking Dnmt1 (1KO ESCs), we demonstrated that in 1KO ESCs, DNMT3-mediated remethylation was interrupted during and after DNA replication. This results in a marked asymmetry in the distribution of 5hmC between sister chromatids at mitosis, with one chromatid being almost no 5hmC. When introduced in 1KO ESCs, the catalytically inactive form of DNMT1 (DNMT1CI) induced an increase in DNAme in pericentric heterochromatin and the DNAme-independent repression of IAPEz, a retrotransposon family, in 1KO ESCs. However, DNMT1CI could not restore the ability of DNMT3 to methylate unmodified dsDNA de novo in S phase in 1KO ESCs. Furthermore, during in vitro differentiation into epiblasts, 1KO ESCs expressing DNMT1CI showed an even stronger tendency to differentiate into the primitive endoderm than 1KO ESCs and were readily reprogrammed into the primitive streak via an epiblast-like cell state, reconfirming the importance of DNMT1 enzymatic activity at the onset of epiblast differentiation. These results indicate a novel function of DNMT1, in which DNMT1 actively regulates the timing and genomic targets of de novo methylation by DNMT3 in an enzymatic activity-dependent and independent manner, respectively.


iScience ◽  
2022 ◽  
pp. 103756
Author(s):  
Elisa Pedone ◽  
Mario Failli ◽  
Gennaro Gambardella ◽  
Rossella De Cegli ◽  
Antonella La Regina ◽  
...  

2022 ◽  
Vol 34 (2) ◽  
pp. 318
Author(s):  
C. Guiltinan ◽  
J. I. Candelaria ◽  
M. B. Rabaglino ◽  
J. M. Smith ◽  
A. C. Denicol

BMB Reports ◽  
2021 ◽  
Vol 54 (12) ◽  
pp. 626-631
Author(s):  
Mihee Oh ◽  
Sun Young Kim ◽  
Jeong-Su Byun ◽  
Seonha Lee ◽  
Won-Kon Kim ◽  
...  

Morphologia ◽  
2021 ◽  
Vol 15 (3) ◽  
pp. 39-49
Author(s):  
K.M. Shevchenko

Neural crest (NC) is a population of cells, formed at the intersection between non-neural ectoderm and neural tube. Neural crest progenitors are multipotent, have capacity to extensive migration and self-renewal. They can be differentiated into various cells types from craniofacial skeletal tissues to components of peripheral nervous system. Influence of signaling molecules and transcription factors, which are expressed at the different stages regulate development of NC. The regulatory network of genes determines the processes of induction, specification, migration and differentiation of neural crest cells (NCC). The purpose of this article is to compare the characteristics of NCC, obtained from tissues of the embryo, fetus and adult; experimental strategies for obtaining NCC from embryonic stem cells, induced pluripotent stem cells, skin fibroblasts; comparison of the potential of different cell types for therapeutic use in a clinical setting. Embryonic stem NCC are differentiated to the trunk, cranial, cardiac, circumpharyngeal and vagal according to the area of their initial migration. Mature stem NCC can be obtained from the dorsal root ganglia, red bone marrow, hair follicle, skin, intestines, carotid body, heart, cornea, iris, dental pulp, hard palate and oral mucosa. Genetic mutations may lead to failure of regulation of NC development, which leads to many congenital human diseases such as cardiovascular defects, craniofacial abnormalities and intestinal aganglionosis, collectively known as neurocristopathies. The identification and isolation of multipotent stem NCC derived from adult tissues, embryonic stem cells, and induced pluripotent stem cells are promising source for regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document