scholarly journals Methylation studies in Peromyscus: aging, altitude adaptation, and monogamy

GeroScience ◽  
2021 ◽  
Author(s):  
Steve Horvath ◽  
Amin Haghani ◽  
Joseph A. Zoller ◽  
Asieh Naderi ◽  
Elham Soltanmohammadi ◽  
...  

AbstractDNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how stress factors impact aging. Deer mice (Peromyscus) are long-living rodents that have emerged as an informative model to study aging, adaptation to extreme environments, and monogamous behavior. In the present study, we have undertaken an exhaustive, genome-wide analysis of DNA methylation in Peromyscus, spanning different species, stocks, sexes, tissues, and age cohorts. We describe DNA methylation-based estimators of age for different species of deer mice based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for deer mice was trained on 3 tissues (tail, liver, and brain). Two human-Peromyscus clocks accurately measure age and relative age, respectively. We present CpGs and enriched pathways that relate to different conditions such as chronological age, high altitude, and monogamous behavior. Overall, this study provides a first step towards studying the epigenetic correlates of monogamous behavior and adaptation to high altitude in Peromyscus. The human-Peromyscus epigenetic clocks are expected to provide a significant boost to the attractiveness of Peromyscus as a biological model.

Author(s):  
Steve Horvath ◽  
Amin Haghani ◽  
Joseph A. Zoller ◽  
Asieh Naderi ◽  
Elham Soltanmohammadi ◽  
...  

ABSTRACTDNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how stress factors impact aging. Deer mice (Peromyscus) are long living rodents that have emerged as an informative model to study aging, adaptation at extreme environments, and monogamous behavior. In the present study we have undertaken an exhaustive, genome-wide analysis of DNA methylation in Peromyscus, spanning different species, stocks, sexes, tissues and age cohorts. We describe DNA methylation-based estimators of age for different species of deer mice based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for deer mice was trained on 3 tissue sources (tail, liver, brain). Two dual species human-peromyscus clocks accurately measure age and relative age defined as the ratio of chronological age to maximum age. These analyses also allowed us to accurately manifest the increasing impact of age, sex, genetic relatedness, and ultimately tissue identity, in that order, in the acquisition of specific methylation patterns in the genome. Genes that were differentially methylated across different biological variables were determined and their potential impact is discussed. This study describes highly accurate DNA methylation-based estimators of age in deer mice and illustrates how differential methylation may be linked to adaptation at different conditions.


2019 ◽  
Author(s):  
Ouzhuluobu ◽  
Yaoxi He ◽  
Haiyi Lou ◽  
Chaoying Cui ◽  
Lian Deng ◽  
...  

AbstractStructural variants (SVs) may play important roles in human adaption to extreme environments such as high altitude but have been under-investigated. Here, combining long-read sequencing with multiple scaffolding techniques, we assembled a high-quality Tibetan genome (ZF1), with a contig N50 length of 24.57 mega-base pairs (Mb) and a scaffold N50 length of 58.80 Mb. The ZF1 assembly filled 80 remaining N-gaps (0.25 Mb in total length) in the reference human genome (GRCh38). Markedly, we detected 17,900 SVs, among which the ZF1-specific SVs are enriched in GTPase activity that is required for activation of the hypoxic pathway. Further population analysis uncovered a 163-bp intronic deletion in the MKL1 gene showing large divergence between highland Tibetans and lowland Han Chinese. This deletion is significantly associated with lower systolic pulmonary arterial pressure, one of the key adaptive physiological traits in Tibetans. Moreover, with the use of the high quality de novo assembly, we observed a much higher rate of genome-wide archaic hominid (Altai Neanderthal and Denisovan) shared non-reference sequences in ZF1 (1.32%-1.53%) compared to other East Asian genomes (0.70%-0.98%), reflecting a unique genomic composition of Tibetans. One such archaic-hominid shared sequence, a 662-bp intronic insertion in the SCUBE2 gene, is enriched and associated with better lung function (the FEV1/FVC ratio) in Tibetans. Collectively, we generated the first high-resolution Tibetan reference genome, and the identified SVs may serve as valuable resources for future evolutionary and medical studies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel L. McCartney ◽  
Josine L. Min ◽  
Rebecca C. Richmond ◽  
Ake T. Lu ◽  
Maria K. Sobczyk ◽  
...  

Abstract Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.


2020 ◽  
Author(s):  
Jean-François Lemaître ◽  
Benjamin Rey ◽  
Jean-Michel Gaillard ◽  
Corinne Régis ◽  
Emmanuelle Gilot ◽  
...  

AbstractDNA methylation-based biomarkers of aging (epigenetic clocks) promise to lead to new insights in the evolutionary biology of ageing. Relatively little is known about how the natural environment affects epigenetic aging effects in wild species. In this study, we took advantage of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus capreolus) living in two wild populations (Chizé and Trois Fontaines, France) facing different ecological contexts to investigate the relationship between chronological age and levels of DNA methylation (DNAm). We generated novel DNA methylation data from n=90 blood samples using a custom methylation array (HorvathMammalMethylChip40). We present three DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in males, females, and both sexes combined. We investigated how sex differences influenced the relationship between DNAm age and chronological age through the use of sex-specific epigenetic clocks. Our results highlight that both populations and sex influence the epigenetic age, with the bias toward a stronger male average age acceleration (i.e. differences between epigenetic age and chronological ages) particularly pronounced in the population facing harsh environmental conditions. Further, we identify the main sites of epigenetic alteration that have distinct aging patterns across the two sexes. These findings open the door to promising avenues of research at the crossroad of evolutionary biology and biogerontology.


2019 ◽  
Vol 7 (2) ◽  
pp. 391-402 ◽  
Author(s):  
Yaoxi He ◽  
Haiyi Lou ◽  
Chaoying Cui ◽  
Lian Deng ◽  
Yang Gao ◽  
...  

Abstract Structural variants (SVs) may play important roles in human adaptation to extreme environments such as high altitude but have been under-investigated. Here, combining long-read sequencing with multiple scaffolding techniques, we assembled a high-quality Tibetan genome (ZF1), with a contig N50 length of 24.57 mega-base pairs (Mb) and a scaffold N50 length of 58.80 Mb. The ZF1 assembly filled 80 remaining N-gaps (0.25 Mb in total length) in the reference human genome (GRCh38). Markedly, we detected 17 900 SVs, among which the ZF1-specific SVs are enriched in GTPase activity that is required for activation of the hypoxic pathway. Further population analysis uncovered a 163-bp intronic deletion in the MKL1 gene showing large divergence between highland Tibetans and lowland Han Chinese. This deletion is significantly associated with lower systolic pulmonary arterial pressure, one of the key adaptive physiological traits in Tibetans. Moreover, with the use of the high-quality de novo assembly, we observed a much higher rate of genome-wide archaic hominid (Altai Neanderthal and Denisovan) shared non-reference sequences in ZF1 (1.32%–1.53%) compared to other East Asian genomes (0.70%–0.98%), reflecting a unique genomic composition of Tibetans. One such archaic hominid shared sequence—a 662-bp intronic insertion in the SCUBE2 gene—is enriched and associated with better lung function (the FEV1/FVC ratio) in Tibetans. Collectively, we generated the first high-resolution Tibetan reference genome, and the identified SVs may serve as valuable resources for future evolutionary and medical studies.


2018 ◽  
Vol 49 (5) ◽  
pp. 791-800 ◽  
Author(s):  
Erika J. Wolf ◽  
Mark W. Logue ◽  
Filomene G. Morrison ◽  
Elizabeth S. Wilcox ◽  
Annjanette Stone ◽  
...  

AbstractBackgroundPosttraumatic stress disorder (PTSD) and stress/trauma exposure are cross-sectionally associated with advanced DNA methylation age relative to chronological age. However, longitudinal inquiry and examination of associations between advanced DNA methylation age and a broader range of psychiatric disorders is lacking. The aim of this study was to examine if PTSD, depression, generalized anxiety, and alcohol-use disorders predicted acceleration of DNA methylation age over time (i.e. an increasing pace, or rate of advancement, of the epigenetic clock).MethodsGenome-wide DNA methylation and a comprehensive set of psychiatric symptoms and diagnoses were assessed in 179 Iraq/Afghanistan war veterans who completed two assessments over the course of approximately 2 years. Two DNA methylation age indices (Horvath and Hannum), each a weighted index of an array of genome-wide DNA methylation probes, were quantified. The pace of the epigenetic clock was operationalized as change in DNA methylation age as a function of time between assessments.ResultsAnalyses revealed that alcohol-use disorders (p = 0.001) and PTSD avoidance and numbing symptoms (p = 0.02) at Time 1 were associated with an increasing pace of the epigenetic clock over time, per the Horvath (but not the Hannum) index of cellular aging.ConclusionsThis is the first study to suggest that posttraumatic psychopathology is longitudinally associated with a quickened pace of the epigenetic clock. Results raise the possibility that accelerated cellular aging is a common biological consequence of stress-related psychopathology, which carries implications for identifying mechanisms of stress-related cellular aging and developing interventions to slow its pace.


Author(s):  
Ainash Childebayeva ◽  
Jaclyn M Goodrich ◽  
Fabiola Leon-Velarde ◽  
Maria Rivera-Chira ◽  
Melisa Kiyamu ◽  
...  

Abstract High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood. We performed an epigenome-wide DNA methylation association study based on whole blood from 113 Peruvian Quechua with differential lifetime exposures to high altitude (>2,500) and recruited based on a migrant study design. We identified two significant differentially methylated positions (DMPs) and 62 differentially methylated regions (DMRs) associated with high-altitude developmental and lifelong exposure statuses. DMPs and DMRs were found in genes associated with hypoxia-inducible factor pathway, red blood cell production, blood pressure, and others. DMPs and DMRs associated with fractional exhaled Nitric Oxide (FeNO) also were identified. We found a significant association between EPAS1 methylation and EPAS1 SNP genotypes, suggesting that local genetic variation influences patterns of methylation. Our findings demonstrate that DNA methylation is associated with early developmental and lifelong high-altitude exposures among Peruvian Quechua as well as altitude-adaptive phenotypes. Together these findings suggest that epigenetic mechanisms might be involved in adaptive developmental plasticity to high altitude. Moreover, we show that local genetic variation is associated with DNA methylation levels, suggesting that methylation associated SNPs could be a potential avenue for research on genetic adaptation to hypoxia in Andeans.


2017 ◽  
Vol 114 (16) ◽  
pp. 4189-4194 ◽  
Author(s):  
Jian Yang ◽  
Zi-Bing Jin ◽  
Jie Chen ◽  
Xiu-Feng Huang ◽  
Xiao-Man Li ◽  
...  

Indigenous Tibetan people have lived on the Tibetan Plateau for millennia. There is a long-standing question about the genetic basis of high-altitude adaptation in Tibetans. We conduct a genome-wide study of 7.3 million genotyped and imputed SNPs of 3,008 Tibetans and 7,287 non-Tibetan individuals of Eastern Asian ancestry. Using this large dataset, we detect signals of high-altitude adaptation at nine genomic loci, of which seven are unique. The alleles under natural selection at two of these loci [methylenetetrahydrofolate reductase (MTHFR) and EPAS1] are strongly associated with blood-related phenotypes, such as hemoglobin, homocysteine, and folate in Tibetans. The folate-increasing allele of rs1801133 at the MTHFR locus has an increased frequency in Tibetans more than expected under a drift model, which is probably a consequence of adaptation to high UV radiation. These findings provide important insights into understanding the genomic consequences of high-altitude adaptation in Tibetans.


2020 ◽  
Author(s):  
Lindsay L. Sailer ◽  
Amin Haghani ◽  
Joseph A. Zoller ◽  
Caesar Z. Li ◽  
Alexander G. Ophir ◽  
...  

ABSTRACTThe quality of romantic relationships can be predictive of health consequences related to aging. DNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how pair bonding impacts aging. Prairie voles (Microtus ochrogaster) have emerged as a model to study social attachment among adult pairs. Here we describe DNA methylation-based estimators of age for prairie voles based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for voles was trained on 3 tissue sources (ear, liver, and samples of brain tissue from within the pair bonding circuit). A novel dual species human-vole clock accurately measured relative age defined as the ratio of chronological age to maximum age. According to the human-vole clock of relative age, sexually inexperienced voles exhibit accelerated epigenetic aging in brain tissue (p = 0.02) when compared to pair bonded animals of the same chronological age. Epigenome wide association studies identified CpGs in four genes that were strongly associated with pair bonding across the three tissue types (brain, ear, and liver): Hnrnph1, Fancl, Fam13b, and Fzd1. Further, four CpGs (near the Bmp4 exon, Eif4g2 3 prime UTR, Robo1 exon, and Nfat5 intron) exhibited a convergent methylation change between pair bonding and aging. This study describes highly accurate DNA methylation-based estimators of age in prairie voles and provides evidence that pair bonding status modulates the methylome.


Sign in / Sign up

Export Citation Format

Share Document