scholarly journals Cinnamon Essential Oil Encapsulated into a Fish Gelatin-Bacterial Cellulose Nanocrystals Complex and Active Films Thereof

2021 ◽  
Author(s):  
Mahsa Sadat Razavi ◽  
Abdollah Golmohammadi ◽  
Ali Nematollahzadeh ◽  
Cesare Rovera ◽  
Stefano Farris
2020 ◽  
Vol 109 ◽  
pp. 106111 ◽  
Author(s):  
Mahsa Sadat Razavi ◽  
Abdollah Golmohammadi ◽  
Ali Nematollahzadeh ◽  
Filippo Fiori ◽  
Cesare Rovera ◽  
...  

Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


2021 ◽  
Vol 97 ◽  
pp. 107161
Author(s):  
Jeongmin Nam ◽  
Yujin Hyun ◽  
Subin Oh ◽  
Jinseok Park ◽  
Hyoung-Joon Jin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeo-Jin Jeong ◽  
Hee-Eun Kim ◽  
Su-Jin Han ◽  
Jun-Seon Choi

AbstractCinnamon essential oil (CEO) has antibacterial properties, but its ability to suppress the formation of multi-species oral biofilms has not been fully elucidated. This study evaluated the antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion (CEON) against oral biofilms formed using a microcosm biofilm model. The biofilms were formed on bovine enamel specimens over a 7-day period, during which all specimens were treated with one of three solutions: 5% CEON (n = 35), 0.5% cocamidopropyl betaine (n = 35), or 0.12% chlorhexidine gluconate (CHX; n = 35). Antibacterial and antibiofilm activities were determined by the red/green ratios (R/G values) of 7-day-old mature biofilms photographed with quantitative light-induced fluorescence-digital, the number of aciduric bacterial colony-forming units (CFUs) within each biofilm, and the absorbance of bacterial suspensions. One-way and repeated-measures analysis of variance were performed to compare differences among the three solutions. R/G values were lowest in the 0.12% CHX group, but not significantly differ from the 5% CEON group. The number of CFUs and absorbance were lowest in the 5% CEON group. This study showed that nanoemulsified CEO inhibited the maturation of multi-species oral biofilms and the growth of oral microorganisms in biofilms, including aciduric bacteria that cause dental caries.


2021 ◽  
Vol 171 ◽  
pp. 113846
Author(s):  
Rongfei Zhang ◽  
Yingjun Cui ◽  
Meng Cheng ◽  
Yanli Guo ◽  
Xiangyou Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document