oral biofilms
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 111)

H-INDEX

38
(FIVE YEARS 7)

Author(s):  
Samar A. Bamofleh ◽  
Mohammed S. Almuammar ◽  
Aljawhara I. Bin Osseil ◽  
Roaa A. Alorf ◽  
Sultan M. Alqhtani ◽  
...  

Although there have been many advances in the medical field regarding disease control and management, it has been demonstrated that certain diseases and infections still represent a significant challenge. For example, the presence of oral biofilms indicates the virulence of the underlying infection in different dental infections diseases, including peri-implantitis, periapical periodontitis, periodontitis, gingivitis, and dental caries. We have discussed various mechanical, chemical, and biological modalities that can be applied to control biofilms and limit plaque formation and secondary caries. Although physical brushing might be efficacious in cleaning, evidence indicates that it cannot eradicate the underlying bacteria. Accordingly, using biological and chemical materials is essential to achieve adequate disinfection and enhance the outcomes. Many modalities have been proposed in the literature, such as nanomaterials, organic compounds such as arginine, dietary substances, and the various chemical oral cleansers discussed in the current study. Bacteriophages are also promising in this context. However, they need further exploration regarding their efficacy and safety. In addition, resistance against these compounds is a serious issue and needs to be addressed in future research.


Biofouling ◽  
2021 ◽  
pp. 1-13
Author(s):  
Aline Leite de Farias ◽  
Maria Isabel Amaya Arbeláez ◽  
Andréia Bagliotti Meneguin ◽  
Hernane da Silva Barud ◽  
Fernanda Lourenção Brighenti

Author(s):  
J. D. Monesh Babu ◽  
A. S. Smiline Girija ◽  
P. Sankar Ganesh ◽  
J. Vijayashree Priyadharsini

Background: A.baumannii is an opportunistic pathogen known for its efficient biofilm formation that is attributed for its virulence. Acinetobacter baumannii is an inhabitant of oral biofilms as well. Many gene operons are involved in the biofilm formation that need to be monitored frequently. Aim: The aim of the present study was to detect the distribution of four biofilm associated genes among A.baumannii. Materials and Methods: Four biofilm forming genes viz., bfms, ptk, pgaB, and fimH of A.baumannii were selected. Forward and reverse primers of those four genes were used for in-silico PCR amplification. 19 strains of A.baumannii set as default on the server were chosen and the amplicon bands were observed Results: The present investigation documents the distribution of four vital biofilm associated gene among 19 different strains of A.baumannii among which bfms was distributed at a higher frequency followed by pgaB and ptk Conclusion: The finding of the study suggests the presence of pgaB, bfms, ptk among the 19 different strains of A.baumannii. However further experimental validation must be done to frequently monitor the presence of the genes among the clinical strains of A.baumannii.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259850
Author(s):  
Maki Sotozono ◽  
Nanako Kuriki ◽  
Yoko Asahi ◽  
Yuichiro Noiri ◽  
Mikako Hayashi ◽  
...  

Dysbiosis of the oral microbiome is associated with diseases such as periodontitis and dental caries. Because the bacterial counts in saliva increase markedly during sleep, it is broadly accepted that the mouth should be cleaned before sleep to help prevent these diseases. However, this practice does not consider oral biofilms, including the dental biofilm. This study aimed to investigate sleep-related changes in the microbiome of oral biofilms by using 16S rRNA gene sequence analysis. Two experimental schedules—post-sleep and pre-sleep biofilm collection—were applied to 10 healthy subjects. Subjects had their teeth and oral mucosa professionally cleaned 7 days and 24 h before sample collection. Samples were collected from several locations in the oral cavity: the buccal mucosa, hard palate, tongue dorsum, gingival mucosa, tooth surface, and saliva. Prevotella and Corynebacterium had higher relative abundance on awakening than before sleep in all locations of the oral cavity, whereas fluctuations in Rothia levels differed depending on location. The microbiome in different locations in the oral cavity is affected by sleep, and changes in the microbiome composition depend on characteristics of the surfaces on which oral biofilms form.


2021 ◽  
Author(s):  
Douglas Roberto Monteiro ◽  
Anne Caroline Morais Caldeirão ◽  
Beatriz Díaz Fabregat ◽  
Laís Salomão Arias ◽  
Heitor Ceolin Araujo ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1540
Author(s):  
Sirui Yang ◽  
Jin Zhang ◽  
Ran Yang ◽  
Xin Xu

Dental caries, as a common oral infectious disease, is a worldwide public health issue. Oral biofilms are the main cause of dental caries. Streptococcus mutans (S. mutans) is well recognized as the major causative factor of dental caries within oral biofilms. In addition to mechanical removal such as tooth brushing and flossing, the topical application of antimicrobial agents is necessarily adjuvant to the control of caries particularly for high-risk populations. The mainstay antimicrobial agents for caries such as chlorhexidine have limitations including taste confusions, mucosal soreness, tooth discoloration, and disruption of an oral microbial equilibrium. Antimicrobial small molecules are promising in the control of S. mutans due to good antimicrobial activity, good selectivity, and low toxicity. In this paper, we discussed the application of antimicrobial small molecules to the control of S. mutans, with a particular focus on the identification and development of active compounds and their modes of action against the growth and virulence of S. mutans.


2021 ◽  
Author(s):  
Madeline Krieger ◽  
Justin Merritt ◽  
Rahul Raghavan

Streptococcus mutans is a major pathobiont involved in the development of dental caries. Its ability to utilize numerous sugars and to effectively respond to environmental stress promotes S. mutans proliferation in oral biofilms. Because of their quick action and low energetic cost, non-coding small RNAs (sRNAs) represent an ideal mode of gene regulation in stress response networks, yet their roles in oral pathogens have remained largely unexplored. We identified 15 novel sRNAs in S. mutans and show that they respond to four stress-inducing conditions commonly encountered by the pathogen in human mouth: sugar-phosphate stress, hydrogen peroxide exposure, high temperature, and low pH. To better understand the role of sRNAs in S. mutans, we further explored the function of the novel sRNA, SmsR4. Our data demonstrate that SmsR4 regulates the EIIA component of the sorbitol phosphotransferase system, which transports and phosphorylates the sugar alcohol sorbitol. The fine-tuning of EIIA availability by SmsR4 likely promotes S. mutans growth while using sorbitol as the main carbon source. Our work lays a foundation for understanding the role of sRNAs in regulating gene expression in stress response networks in S. mutans and highlights the importance of the underexplored phenomenon of posttranscriptional gene regulation in oral bacteria.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6805
Author(s):  
Hideaki Sato ◽  
Hiroshi Ishihata ◽  
Yutaka Kameyama ◽  
Ryokichi Shimpo ◽  
Satoshi Komasa

Oral dysfunction due to peri-implantitis and shortened life of implants has become a major concern. Self-care and removal of oral biofilms by professional mechanical tooth cleaning (PMTC) are indispensable for its prevention. However, if the surface roughness of the implant is increased, it may result in the adhesion of biofilm in the oral cavity. Therefore, the PMTC method can serve for long-term implant management. Calcium carbonate (CaCO3) has been used as a cleaning method for implant surfaces; however, there is concern that the implant surface roughness could increase due to particle collision. Therefore, in this study, to establish a blasting cleaning method that does not adversely affect the implant surface, a new blasting cleaning method using agar particles was devised and its practical application examined. When the simulated stains were blasted with white alumina (WA) abrasive grains and CaCO3 particles, the simulated stains were almost removed, the surface roughness changed to a satin-finished surface—which was thought to be due to fine scratches—and the surface roughness increased. Most of the simulated stains were removed on the surface of the sample blasted with glycine particles and agar particles. Conversely, the gloss of the sample surface was maintained after cleaning, and the increase in surface roughness was slight.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4029
Author(s):  
Hannah Kurz ◽  
Lamprini Karygianni ◽  
Aikaterini Argyropoulou ◽  
Elmar Hellwig ◽  
Alexios Leandros Skaltsounis ◽  
...  

Given the undesirable side effects of commercially used mouth rinses that include chemically synthesized antimicrobial compounds such as chlorhexidine, it is essential to discover novel antimicrobial substances based on plant extracts. The aim of this study was to examine the antimicrobial effect of Inula viscosa extract on the initial microbial adhesion in the oral cavity. Individual test splints were manufactured for the participants, on which disinfected bovine enamel samples were attached. After the initial microbial adhesion, the biofilm-covered oral samples were removed and treated with different concentrations (10, 20, and 30 mg/mL) of an I. viscosa extract for 10 min. Positive and negative controls were also sampled. Regarding the microbiological parameters, the colony-forming units (CFU) and vitality testing (live/dead staining) were examined in combination with fluorescence microscopy. An I. viscosa extract with a concentration of 30 mg/mL killed the bacteria of the initial adhesion at a rate of 99.99% (log10 CFU value of 1.837 ± 1.54). Compared to the negative control, no killing effects were determined after treatment with I. viscosa extract at concentrations of 10 mg/mL (log10 CFU value 3.776 ± 0.831; median 3.776) and 20 mg/mL (log10 CFU value 3.725 ± 0.300; median 3.711). The live/dead staining revealed a significant reduction (p < 0.0001) of vital adherent bacteria after treatment with 10 mg/mL of I. viscosa extract. After treatment with an I. viscosa extract with a concentration of 30 mg/mL, no vital bacteria could be detected. For the first time, significant antimicrobial effects on the initial microbial adhesion in in situ oral biofilms were reported for an I. viscosa extract.


Author(s):  
M. Indumathi ◽  
A. S. Smiline Girija ◽  
P. Sankar Ganesh ◽  
J. Vijayashree Priyadharsini

Background: Acinetobacter baumannii is a gram negative non-motile coccobacillus, which was considered as a low priority pathogen with low virulence. Recently, it was declared as the priority pathogen under the critical category of the most dangerous pathogen by WHO. Acinetobacter Baumannii is an inhabitant of oral biofilms, and it also increases the risk of refractory periodontitis. It causes nosocomial infections with pgaB, a part of pgaABCD operon which is involved in the biofilm formation. Aim: The aim of the present study was to detect the immunodominant peptides against pgaB of Acinetobacter baumannii using bioinformatic tools and databases. Materials and Methods: The present study was carried out using immune informatics. The protein sequence of the pgaB protein from A.baumannii was subjected to assess allergenicity, secondary structure, antigenicity and stability prediction of selected T cell epitopes, physico-chemical analysis, Identification of MHC class 2 binders, Final selection of B-cell epitopes was done with IEDB B-cell epitope tool Results: Final docking of the peptides were interpreted by hydrogen bonds and interac- tion scores with TLR-2. Promising scores on antigenicity, instability were obtained. Based on the combinatorial scores, one vaccine peptide (LNLTLGLAL) was suggested to be a promising vaccine candidate against pgaB of A.baumannii. Conclusion: The findings of the present study suggest epitope LNLTLGLAL as a promising vaccine candidate against pgaB of A.baumannii. The vaccine peptides targeting the pgaB Gene in A.baumannii using an immune-informatics approach suggests promising results in the present study. However, the predicted epitope peptides need further experimentation in animal models for its application against A.baumannii.


Sign in / Sign up

Export Citation Format

Share Document