Biotransformation of [U-13C]linoleic acid suggests two independent ketonic- and aldehydic cycles within C8-oxylipin biosynthesis in Cyclocybe aegerita (V. Brig.) Vizzini
AbstractAlthough the typical aroma contributing compounds in fungi of the phylum Basidiomycota are known for decades, their biosynthetic pathways are still unclear. Amongst these volatiles, C8-compounds are probably the most important ones as they function, in addition to their specific perception of fungal odour, as oxylipins. Previous studies focused on C8-oxylipin production either in fruiting bodies or mycelia. However, comparisons of the C8-oxylipin biosynthesis at different developmental stages are scarce, and the biosynthesis in basidiospores was completely neglected. In this study, we addressed this gap and were able to show that the biosynthesis of C8-oxylipins differs strongly between different developmental stages. The comparison of mycelium, primordia, young fruiting bodies, mature fruiting bodies, post sporulation fruiting bodies and basidiospores revealed that the occurance of the two main C8-oxylipins octan-3-one and oct-1-en-3-ol distinguished in different stages. Whereas oct-1-en-3-ol levels peaked in the mycelium and decreased with ongoing maturation, octan-3-one levels increased during maturation. Furthermore, oct-2-en-1-ol, octan-1-ol, oct-2-enal, octan-3-ol, oct-1-en-3-one and octanal contributed to the C8-oxylipins but with drastically lower levels. Biotransformations with [U-13C]linoleic acid revealed that early developmental stages produced various [U-13C]oxylipins, whereas maturated developmental stages like post sporulation fruiting bodies and basidiospores produced predominantly [U-13C]octan-3-one. Based on the distribution of certain C8-oxylipins and biotransformations with putative precursors at different developmental stages, two distinct biosynthetic cycles were deduced with oct-2-enal (aldehydic-cycle) and oct-1-en-3-one (ketonic-cycle) as precursors.