scholarly journals Biotransformation of [U-13C]linoleic acid suggests two independent ketonic- and aldehydic cycles within C8-oxylipin biosynthesis in Cyclocybe aegerita (V. Brig.) Vizzini

2021 ◽  
Vol 20 (8) ◽  
pp. 929-940
Author(s):  
Dominik Karrer ◽  
Vanessa Weigel ◽  
Nikolas Hoberg ◽  
Alexander Atamasov ◽  
Martin Rühl

AbstractAlthough the typical aroma contributing compounds in fungi of the phylum Basidiomycota are known for decades, their biosynthetic pathways are still unclear. Amongst these volatiles, C8-compounds are probably the most important ones as they function, in addition to their specific perception of fungal odour, as oxylipins. Previous studies focused on C8-oxylipin production either in fruiting bodies or mycelia. However, comparisons of the C8-oxylipin biosynthesis at different developmental stages are scarce, and the biosynthesis in basidiospores was completely neglected. In this study, we addressed this gap and were able to show that the biosynthesis of C8-oxylipins differs strongly between different developmental stages. The comparison of mycelium, primordia, young fruiting bodies, mature fruiting bodies, post sporulation fruiting bodies and basidiospores revealed that the occurance of the two main C8-oxylipins octan-3-one and oct-1-en-3-ol distinguished in different stages. Whereas oct-1-en-3-ol levels peaked in the mycelium and decreased with ongoing maturation, octan-3-one levels increased during maturation. Furthermore, oct-2-en-1-ol, octan-1-ol, oct-2-enal, octan-3-ol, oct-1-en-3-one and octanal contributed to the C8-oxylipins but with drastically lower levels. Biotransformations with [U-13C]linoleic acid revealed that early developmental stages produced various [U-13C]oxylipins, whereas maturated developmental stages like post sporulation fruiting bodies and basidiospores produced predominantly [U-13C]octan-3-one. Based on the distribution of certain C8-oxylipins and biotransformations with putative precursors at different developmental stages, two distinct biosynthetic cycles were deduced with oct-2-enal (aldehydic-cycle) and oct-1-en-3-one (ketonic-cycle) as precursors.

2015 ◽  
Vol 15 (6) ◽  
pp. 707-716 ◽  
Author(s):  
Mingli Yu ◽  
Fengzhen Liu ◽  
Weiwei Zhu ◽  
Meihong Sun ◽  
Jiang Liu ◽  
...  

2017 ◽  
Vol 186 (1) ◽  
pp. 103-112
Author(s):  
Lukáš Laibl ◽  
Oldřich Fatka

This contribution briefly summarizes the history of research, modes of preservation and stratigraphic distribution of 51 trilobite and five agnostid taxa from the Barrandian area, for which the early developmental stages have been described.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 638
Author(s):  
Monika Mazur ◽  
Daria Wojciechowska ◽  
Ewa Sitkiewicz ◽  
Agata Malinowska ◽  
Bianka Świderska ◽  
...  

The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


Sign in / Sign up

Export Citation Format

Share Document