early developmental stages
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 50)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Vol 807 ◽  
pp. 150697
Author(s):  
Libe Aranguren-Abadía ◽  
Fekadu Yadetie ◽  
Carey E. Donald ◽  
Elin Sørhus ◽  
Lars Eirik Myklatun ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Wen Zhang ◽  
Jianjian Lv ◽  
Weikang Lan ◽  
Baoquan Gao ◽  
Ping Liu

Portunus trituberculatus is one of the main mariculture crabs of high economic value. To identify genes involved in sex determination, we first performed sex-specific transcriptome sequencing at six larval development stages using a DNA/RNA co-extraction method. A total of 907,952,938 and 828,774,880 reads were obtained from female and male crabs, respectively. 2,379 differentially expressed genes (DEGs) were found between females and males, and were mainly enriched in DNA replication, folate biosynthesis, and retinol metabolism pathways. Furthermore, transcription patterns of genes in the sex-determining region (SD) were analyzed based on the transcriptome data, and one Dmrt gene (PtDMY) was found to be exclusively expressed in males during early developmental stages. Notably, some known sex-related genes, including IAG, Dmrt11E, DmrtB1, and DmrtC2 were significantly down-regulated after knocking down PtDMY. Our results suggested that PtDMY is involved in sex determination and may be one of the key upstream regulators of the sex determination pathway. In addition, the massive volume of transcriptome data obtained in this study provided an important basis for the systematic study of sex determination mechanisms in P. trituberculatus.


2021 ◽  
Author(s):  
Vinay TN ◽  
Patil PK ◽  
Aravind R ◽  
Shyne Anand PS ◽  
Baskaran V ◽  
...  

Abstract Gut microbiota is known to influence the physiology, health, nutrient absorption, reproduction, and other metabolic activities of aquatic organisms. Microbial composition can influence intestinal immunity and are considered as health indicators. Information on gut microbial composition provides potential application possibilities to improve shrimp health and production. In the absence of such information for Penaeus indicus, the present study reports the microbial community structure associated with its early developmental stages. Bacterial community associated with the early developmental stages (egg, nauplii, zoea, mysis, postlarvae-1, postlarvae-6 and postlarvae-12) from two hatchery cycles were analysed employing 16S rRNA high throughput sequencing. Proteobacteria and Bacteroidetes, were the two dominant phyla in P. indicus development stages. Sequential sampling revealed the constant change in the bacterial composition at genus level. Alteromonas was dominant in egg and nauplii stage, whilst Ascidiaceihabitans (formerly Roseobacter) was the dominant genera in both PL6 and PL12. The bacterial composition was highly dynamic in early stages and our study suggests that the mysis stage is the critical phase in transforming the microbial composition and it gets stabalised by early post larval stages. This is the first report on the composition of microbiota in early developmental stages of P. indicus. Based on these results the formation of microbial composition seems to be influenced by feeding at early stages. The study provides valuable information to device intervention strategies for healthy seed production.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12241
Author(s):  
Carolane Giraud ◽  
Nolwenn Callac ◽  
Maxime Beauvais ◽  
Jean-René Mailliez ◽  
Dominique Ansquer ◽  
...  

Background Microbial communities associated with animals are known to be key elements in the development of their hosts. In marine environments, these communities are largely under the influence of the surrounding water. In aquaculture, understanding the interactions existing between the microbiotas of farmed species and their rearing environment could help establish precise bacterial management. Method In light of these facts, we studied the active microbial communities associated with the eggs and the nauplii of the Pacific blue shrimp (Litopenaeus stylirostris) and their rearing water. All samples were collected in September 2018, November 2018 and February 2019. After RNA extractions, two distinct Illumina HiSeq sequencings were performed. Due to different sequencing depths and in order to compare samples, data were normalized using the Count Per Million method. Results We found a core microbiota made of taxa related to Aestuariibacter, Alteromonas, Vibrio, SAR11, HIMB11, AEGEAN 169 marine group and Candidatus Endobugula associated with all the samples indicating that these bacterial communities could be transferred from the water to the animals. We also highlighted specific bacterial taxa in the eggs and the nauplii affiliated to Pseudomonas, Corynebacterium, Acinetobacter, Labrenzia, Rothia, Thalassolituus, Marinobacter, Aureispira, Oleiphilus, Profundimonas and Marinobacterium genera suggesting a possible prokaryotic vertical transmission from the breeders to their offspring. This study is the first to focus on the active microbiota associated with early developmental stages of a farmed shrimp species and could serve as a basis to comprehend the microbial interactions involved throughout the whole rearing process.


2021 ◽  
pp. 109621
Author(s):  
Morgane Vandendoren ◽  
Donal O’Toole ◽  
Jason Gigley ◽  
Runhui Zhang ◽  
Berit Bangoura

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Safiye E. Sarper ◽  
Tamami Hirai ◽  
Take Matsuyama ◽  
Shigeru Kuratani ◽  
Koichi Fujimoto

AbstractSymmetry in the arrangement of body parts is a distinctive phylogenetic feature of animals. Cnidarians show both bilateral and radial symmetries in their internal organs, such as gastric pouches and muscles. However, how different symmetries appear during the developmental process remains unknown. Here, we report intraspecific variations in the symmetric arrangement of gastric pouches, muscles, and siphonoglyphs, the Anthozoan-specific organ that drives water into the organism, in D. lineata (Diadumenidae, Actiniaria). We found that the positional arrangement of the internal organs was apparently constrained to either biradial or bilateral symmetries depending on the number of siphonoglyphs. Based on the morphological observations, a mathematical model of internal organ positioning was employed to predict the developmental backgrounds responsible for the biradial and bilateral symmetries. In the model, we assumed that the specification of gastric pouches is orchestrated by lateral inhibition and activation, which results in different symmetries depending on the number of siphonoglyphs. Thus, we propose that a common developmental program can generate either bilateral or biradial symmetries depending on the number of siphonoglyphs formed in the early developmental stages.


2021 ◽  
Vol 220 ◽  
pp. 112385
Author(s):  
Wei Yuan ◽  
Zhaopeng Xu ◽  
You Wei ◽  
Wuting Lu ◽  
Kun Jia ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aurélie Bochet ◽  
Holger Franz Sperdin ◽  
Tonia Anahi Rihs ◽  
Nada Kojovic ◽  
Martina Franchini ◽  
...  

AbstractAutism spectrum disorders (ASD) are associated with disruption of large-scale brain network. Recently, we found that directed functional connectivity alterations of social brain networks are a core component of atypical brain development at early developmental stages in ASD. Here, we investigated the spatio-temporal dynamics of whole-brain neuronal networks at a subsecond scale in 113 toddlers and preschoolers (66 with ASD) using an EEG microstate approach. We first determined the predominant microstates using established clustering methods. We identified five predominant microstate (labeled as microstate classes A–E) with significant differences in the temporal dynamics of microstate class B between the groups in terms of increased appearance and prolonged duration. Using Markov chains, we found differences in the dynamic syntax between several maps in toddlers and preschoolers with ASD compared to their TD peers. Finally, exploratory analysis of brain–behavioral relationships within the ASD group suggested that the temporal dynamics of some maps were related to conditions comorbid to ASD during early developmental stages.


2021 ◽  
Vol 20 (8) ◽  
pp. 929-940
Author(s):  
Dominik Karrer ◽  
Vanessa Weigel ◽  
Nikolas Hoberg ◽  
Alexander Atamasov ◽  
Martin Rühl

AbstractAlthough the typical aroma contributing compounds in fungi of the phylum Basidiomycota are known for decades, their biosynthetic pathways are still unclear. Amongst these volatiles, C8-compounds are probably the most important ones as they function, in addition to their specific perception of fungal odour, as oxylipins. Previous studies focused on C8-oxylipin production either in fruiting bodies or mycelia. However, comparisons of the C8-oxylipin biosynthesis at different developmental stages are scarce, and the biosynthesis in basidiospores was completely neglected. In this study, we addressed this gap and were able to show that the biosynthesis of C8-oxylipins differs strongly between different developmental stages. The comparison of mycelium, primordia, young fruiting bodies, mature fruiting bodies, post sporulation fruiting bodies and basidiospores revealed that the occurance of the two main C8-oxylipins octan-3-one and oct-1-en-3-ol distinguished in different stages. Whereas oct-1-en-3-ol levels peaked in the mycelium and decreased with ongoing maturation, octan-3-one levels increased during maturation. Furthermore, oct-2-en-1-ol, octan-1-ol, oct-2-enal, octan-3-ol, oct-1-en-3-one and octanal contributed to the C8-oxylipins but with drastically lower levels. Biotransformations with [U-13C]linoleic acid revealed that early developmental stages produced various [U-13C]oxylipins, whereas maturated developmental stages like post sporulation fruiting bodies and basidiospores produced predominantly [U-13C]octan-3-one. Based on the distribution of certain C8-oxylipins and biotransformations with putative precursors at different developmental stages, two distinct biosynthetic cycles were deduced with oct-2-enal (aldehydic-cycle) and oct-1-en-3-one (ketonic-cycle) as precursors.


Sign in / Sign up

Export Citation Format

Share Document