scholarly journals A Comparative Study of Fluid Flow and Mass Transfer in a Trumpet-Shaped Ladle Shroud Using Large Eddy Simulation

2015 ◽  
Vol 47 (1) ◽  
pp. 495-507 ◽  
Author(s):  
Jiangshan Zhang ◽  
Jingshe Li ◽  
Yi Yan ◽  
Zhixin Chen ◽  
Shufeng Yang ◽  
...  
2020 ◽  
Vol 12 (1) ◽  
pp. 39-53
Author(s):  
M. S. I. Mallik ◽  
M. A. Hoque ◽  
M. A. Uddin

This paper presents results of comparative study of large eddy simulation (LES) that is applied to a plane turbulent channel flow. The LES is performed by using a finite difference method of second order accuracy in space and a low-storage explicit Runge-Kutta method with third order accuracy in time. In the LES for subgrid-scale (SGS) modelling, Standard Smagorinsky Model (SSM) and Dynamic Smagorinsky Model (DSM) are used. Essential turbulence statistics from the two LES approaches are calculated and compared with those from direct numerical simulation (DNS) data. Comparing the results throughout the calculation domain, it has been found out that SSM performs better than DSM in the turbulent channel flow simulation. Flow structures in the computed flow field by the SSM and DSM are also discussed and compared through the contour plots and iso-surfaces.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 301-315
Author(s):  
Habibollah Heidarzadeh ◽  
Mousa Farhadi ◽  
Kurosh Sedighi

Turbulent fluid flow and convective heat transfer over the wall mounted cube in different flow angle of attack have been studied numerically using Large Eddy Simulation. Cube faces and plate have a constant heat flux. Dynamic Smagorinsky (DS) subgrid scale model were used in this study. Angles were in the range 0???45 and Reynolds number based on the cube height and free stream velocity was 4200. The numerical simulation results were compared with the experimental data of Nakamura et al [6, 7]. Characteristics of fluid flow field and heat transfer compared for four angles of attack. Flow around the cube was classified to four regimes. Results was represented in the form of time averaged normalized streamwise velocity and Reynolds stress in different positions, temperature contours, local and average Nusselt number over the faces of cube. Local convective heat transfer on cube faces was affected by flow pattern around the cube. The local convective heat transfer from the faces of the cube and plate are directly related to the complex phenomena such as horse shoe vortex, arch vortexes in behind the cube, separation and reattachment. Results show that overall convective heat transfer of cube and mean drag coefficient have maximum and minimum value at ?=0 deg and ?=25 deg respectively.


Sign in / Sign up

Export Citation Format

Share Document