detached eddy simulation
Recently Published Documents


TOTAL DOCUMENTS

839
(FIVE YEARS 225)

H-INDEX

37
(FIVE YEARS 6)

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123031
Author(s):  
Wubingyi Shen ◽  
Yue Huang ◽  
Wei Yao ◽  
Hedong Liu ◽  
Yancheng You

2022 ◽  
Author(s):  
Ashley M. Korzun ◽  
Gabriel Nastac ◽  
Aaron Walden ◽  
Eric J. Nielsen ◽  
William T. Jones ◽  
...  

2022 ◽  
Vol 148 (1) ◽  
Author(s):  
Zhengwen Li ◽  
Zhaowei Liu ◽  
Haoran Wang ◽  
Yongcan Chen ◽  
Ling Li ◽  
...  

Author(s):  
Farzad Bazdidi–Tehrani ◽  
Ali Saadniya ◽  
Soroush Rashidzadeh

Nowadays, synthetic jets have various applications such as cooling enhancement and active flow control. In the present paper, the capability of two turbulence modelling approaches in predicting thermal performance of an impinging synthetic jet is investigated. These two approaches are scale adaptive simulation (SAS) and detached eddy simulation (DES). Comparisons between numerical data and experimental studies reveal that the ability of DES in predicting the asymmetrical trend of heat transfer profiles is better than SAS in almost all the study cases. Although, near the stagnation zone, the performance of SAS is superior. Results show that the effects of parameters such as frequency, cross-flow velocity and suction duty cycle factor are well predicted by both approaches. An increase of cross-flow velocity from 1.81 m/s to 2.26 m/s results in an improvement of [Formula: see text] near the stagnation point by almost 16.3% and 9.2% using DES and SAS, respectively.


2021 ◽  
Vol 12 (1) ◽  
pp. 191
Author(s):  
Miguel Suffo ◽  
Cristobal J. López-Marín

Current commercial software tools implement turbulence models on computational fluid dynamics (CFD) techniques and combine them with fluid-structural interaction (FSI) techniques. There are currently a great variety of turbulence methods that are worth investigating through a comparative study in order to delineate their behavior on scaffolds used in tissue engineering and bone regeneration. Additive manufacturing (AM) offers the opportunity to obtain three-dimensional printed scaffolds (3D scaffolds) that are designed respecting morphologies and that are typically used for the fused deposition model (FDM). These are typically made using biocompatible and biodegradable materials, such as polyetherimide (PEI), ULTEM 1010 biocompatible and polylactic acid (PLA). Starting from our own geometric model, simulations were carried out applying a series of turbulence models which have been proposed due to a variety of properties, such as permeability, speed regime, pressures, depressions and stiffness, that in turn are subject to boundary conditions based on a blood torrent. The obtained results revealed that the detached eddy simulation (DES) model shows better performance for the use of 3D scaffolds in its normal operating regime. Finally, although the results do not present relevant differences between the two materials used in the comparison, the prototypes simulated in PEI ULTEM 1010 do not allow their manufacture in FDM for the required pore size. The printed 3D scaffolds of PLA reveal an elastic behavior and a rigidity that are similar to other prototypes of ceramic composition. Prototypes made of PLA reveal unpredictable variability in pore and layer size which are very similar to cell growth itself and difficult to keep constant.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Armin Weiss ◽  
Reinhard Geisler ◽  
Martin M. Müller ◽  
Christian Klein ◽  
Ulrich Henne ◽  
...  

Abstract The study presents an optimized pressure-sensitive paint (PSP) measurement system that was applied to investigate unsteady surface pressures on recently developed double-swept rotor blades in the rotor test facility at the German Aerospace Center (DLR) in Göttingen. The measurement system featured an improved version of a double-shutter camera that was designed to reduce image blur in PSP measurements on fast rotating blades. It also comprised DLR’s PSP sensor, developed to capture transient flow phenomena (iPSP). Unsteady surface pressures were acquired across the outer 65% of the rotor blade with iPSP and at several radial blade sections by fast-response pressure transducers at blade-tip Mach and Reynolds numbers of $$\mathrm {M}_\mathrm{tip} = 0.282-0.285$$ M tip = 0.282 - 0.285 and $$\mathrm {Re}_\mathrm{tip}= 5.84-5.95 \times 10^5$$ Re tip = 5.84 - 5.95 × 10 5 . The unique experimental setup allowed for scanning surface pressures across the entire pitch cycle at a phase resolution of $${0.225}\,{\mathrm{deg}}$$ 0.225 deg azimuth for different collective and cyclic-pitch settings. Experimental results of both investigated cyclic-pitch settings are compared in detail to a delayed detached eddy simulation using the flow solver FLOWer and to flow visualizations from unsteady Reynolds-averaged Navier–Stokes (URANS) computations with DLR’s TAU code. The findings reveal a detailed and yet unseen insight into the pressure footprint of double-swept rotor blades undergoing dynamic stall and allow for deducing “stall maps”, where confined areas of stalled flow on the blade are identifiable as a function of the pitch phase. Graphical abstract


Author(s):  
Hao Wu ◽  
Antonio Carlos Fernandes ◽  
Renjing Cao

Abstract The uniform flow over a nominally two-dimensional normal thin flat plate with blockage ratio 0.214 was numerically investigated in three dimensions by three methods: unsteady Reynolds-averaged Navier–Stokes (URANS) based on the realizable k-epsilon (RKE) turbulence model, URANS based on the k–omega shear stress transport (SST) turbulence model and detached eddy simulation (DES). The Reynolds number based on the inlet flow velocity and the chord width of the plate was 117000. A comprehensive comparison against earlier experimental results showed that URANS-SST method only could give a correct Strouhal number but overestimated the mean base pressure distribution and mean drag coefficient, while URANS-RKE and DES methods succeeded in giving accurate prediction of all. Moreover, by comparing the instantaneous vorticity contours and 3D turbulent flow structures, it is found that DES is better suited for the present case because it can capture irregular small-scale structures and reproduce the three-dimensionality and low-frequency unsteadiness of the vortex shedding. Finally, through the volume-of-fluid (VOF) based simulation of the free surface, it is demonstrated that the free surface has no significant effect on mean drag coefficient and Strouhal number.


Sign in / Sign up

Export Citation Format

Share Document