Construction of the Core–Shell Tourmaline@ZnO Micro-nano Structure Towards the Highly Efficient Degradation of Organic Pollutants

Author(s):  
Lili Sun ◽  
Yun Guo ◽  
Lixin Fu ◽  
Yao Hu ◽  
Shengsen Pan ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (45) ◽  
pp. 26639-26645
Author(s):  
Jing Jin ◽  
Wei Song ◽  
Ning Zhang ◽  
Linjia Li ◽  
Hao Liu ◽  
...  

The possible mechanism of enhanced photocatalytic performance of Ag@CDs–TiO2 hybrid NFs.


2014 ◽  
Vol 2 (30) ◽  
pp. 11759-11767 ◽  
Author(s):  
Xiaoman Zhang ◽  
Jinyun Liu ◽  
Sean Joseph Kelly ◽  
Xingjiu Huang ◽  
Jinhuai Liu

A novel snowflake-shaped micro-/nano-structure was reported as a highly efficient adsorbent for removing pollutants from aqueous solution.


RSC Advances ◽  
2019 ◽  
Vol 9 (18) ◽  
pp. 10272-10281 ◽  
Author(s):  
Yide Xia ◽  
Ying Liu ◽  
Nannan Shi ◽  
Xungao Zhang

In this article, the catalyst Au/γ-Fe2O3@hydroxyapatite (Au/γ-Fe2O3@HAP) consisting of Au nanoparticles supported on the core–shell structure γ-Fe2O3@HAP was prepared through a deposition–precipitation method.


2014 ◽  
Vol 16 (38) ◽  
pp. 20532-20536 ◽  
Author(s):  
Yanxing Zhang ◽  
Zongxian Yang ◽  
Meng Wu

With the consideration of the stability and cost, we found that the Fe, Co, Ni, Cu, Ru, Ir atoms have lower price than the Pd and favor at the core even with O adatom at the surface. The formed M@Pd core–shell nanowires are active for O2 dissociation with activation barriers no larger than 0.25 eV.


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


2019 ◽  
Author(s):  
Jiajia Tao ◽  
Hong-Ping Ma ◽  
Kaiping Yuan ◽  
Yang Gu ◽  
Jianwei Lian ◽  
...  

<div>As a promising oxygen evolution reaction semiconductor, TiO2 has been extensively investigated for solar photoelectrochemical water splitting. Here, a highly efficient and stable strategy for rationally preparing GaON cocatalysts on TiO2 by atomic layer deposition is demonstrated, which we show significantly enhances the</div><div>photoelectrochemical performance compared to TiO2-based photoanodes. For TiO2@20 nm-GaON core-shell nanowires a photocurrent density up to 1.10 mA cm-2 (1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of TiO2 NWs. Furthermore, the oxygen vacancy formation on GaON as well as the band gap matching with TiO2 not only provides more active sites for water oxidation but also enhances light absorption to promote interfacial charge separation and migration. Density functional theory studies of model systems of GaON-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaON core-shell nanowires provide a deeper understanding and universal strategy for enhancing photoelectrochemical performance of photoanodes now available. </div>


2020 ◽  
Vol 381 ◽  
pp. 122631 ◽  
Author(s):  
Fei Liu ◽  
Yibing Sun ◽  
Jiayu Gu ◽  
Qianhong Gao ◽  
Dongping Sun ◽  
...  

Author(s):  
Ning Zhang ◽  
Sufen Lin ◽  
Fuchen Wang ◽  
Yongdi Liu ◽  
Jinlong Zhang ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.


Sign in / Sign up

Export Citation Format

Share Document