click reaction
Recently Published Documents


TOTAL DOCUMENTS

1634
(FIVE YEARS 571)

H-INDEX

62
(FIVE YEARS 13)

2022 ◽  
Vol 1 ◽  
pp. 100003
Author(s):  
Feng Chen ◽  
Xiongjie Lin ◽  
Yang Li ◽  
Dongdong Xu ◽  
Huayu Qiu ◽  
...  

2022 ◽  
Vol 164 ◽  
pp. 106700
Author(s):  
Joo Hyung Lee ◽  
Chang Kyu Park ◽  
Jong Sun Jung ◽  
Seong Hun Kim
Keyword(s):  

Author(s):  
Lulu Tian ◽  
Gaihuan Ren ◽  
Pan Zhang ◽  
Bo Li ◽  
Shuzhen Chang ◽  
...  

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Liying Sun ◽  
Shan Li ◽  
Kaifeng Yang ◽  
Junchao Wang ◽  
Zhengjun Li ◽  
...  

AbstractIn this study, we aimed at constructing polycaprolactone (PCL) reinforced keratin/bioactive glass composite scaffolds with a double cross-linking network structure for potential bone repair application. Thus, the PCL-keratin-BG composite scaffold was prepared by using keratin extracted from wool as main organic component and bioactive glass (BG) as main inorganic component, through both cross-linking systems, such as the thiol-ene click reaction between abundant sulfhydryl groups of keratin and the unsaturated double bond of 3-methacryloxy propyltrimethoxy silane (MPTS), and the amino-epoxy reaction between amino groups of keratin and the epoxy group in (3-glycidoxymethyl) methyldiethoxysilane (GPTMS) molecule, along with introduction of PCL as a reinforcing agent. The success of the thiol-ene reaction was verified by the FTIR and 1H-NMR analyses. And the structure of keratin-BG and PCL-keratin-BG composite scaffolds were studied and compared by the FTIR and XRD characterization, which indicated the successful preparation of the PCL-keratin-BG composite scaffold. In addition, the SEM observation, and contact angle and water absorption rate measurements demonstrated that the PCL-keratin-BG composite scaffold has interconnected porous structure, appropriate pore size and good hydrophilicity, which is helpful to cell adhesion, differentiation and proliferation. Importantly, compression experiments showed that, when compared with the keratin-BG composite scaffold, the PCL-keratin-BG composite scaffold increased greatly from 0.91 ± 0.06 MPa and 7.25 ± 1.7 MPa to 1.58 ± 0.21 MPa and 14.14 ± 1.95 MPa, respectively, which suggesting the strong reinforcement of polycaprolactone. In addition, the biomineralization experiment and MTT assay indicated that the PCL-keratin-BG scaffold has good mineralization ability and no-cytotoxicity, which can promote cell adhesion, proliferation and growth. Therefore, the results suggested that the PCL-keratin-BG composite scaffold has the potential as a candidate for application in bone regeneration field. Graphical Abstract


Author(s):  
Nasrollah Rezaei-Ghaleh ◽  
Jaime Agudo-Canalejo ◽  
Christian Griesinger ◽  
Ramin Golestanian

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 628
Author(s):  
Sylwia Dworakowska ◽  
Adrien Cornille ◽  
Dariusz Bogdal ◽  
Bernard Boutevin ◽  
Sylvain Caillol

High oleic sunflower oil-based polyol was obtained by thiol-ene coupling and applied in the preparation of flexible polyurethane foams. The photochemically initiated thiol-ene click reaction was carried out under UV irradiation using 2-mercaptoethanol. Bio-based polyol with hydroxyl value of 201.4 mg KOH/g was used as 30 wt% substituent of petrochemical polyether polyol in the formulations of flexible foams. Both reference foams, as well as foams modified with bio-based polyol, were formulated to have various isocyanate indices (0.85, 0.95, 1.05). Flexible foams were compared in terms of their thermomechanical properties and analyzed using FT-IR and SEM microscopy. Modification with bio-based polyol resulted in foams with superior compression properties, higher support factor, and lower resilience than reference foams. TGA and FT-IR curves confirmed the presence of urethane/urea and ether linkages in the polyurethane matrix. Moreover, double glass transition temperature corresponding to soft and hard segments of polyurethane was observed by DSC proving the phase-separated morphology.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Rajesh Kumar ◽  
Jyotirmoy Maity ◽  
Divya Mathur ◽  
Abhishek Verma ◽  
Neha Rana ◽  
...  

Abstract Modified nucleosides are the core precursors for the synthesis of artificial nucleic acids, and are important in the field of synthetic and medicinal chemistry. In order to synthesize various triazolo-compounds, copper and ruthenium catalysed azide–alkyne 1,3-dipolar cycloaddition reactions also known as click reaction have emerged as a facile and efficient tool due to its simplicity and convenient conditions. Introduction of a triazole ring in nucleosides enhances their therapeutic value and various photophysical properties. This review primarily focuses on the plethora of synthetic methodologies being employed to synthesize sugar modified triazolyl nucleosides, their therapeutic importance and various other applications.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 52
Author(s):  
Che Zhao ◽  
Chengju Sheng ◽  
Chao Zhou

Traditional antibacterial hydrogels have a broad-spectrum bactericidal effect and are widely used as wound dressings. However, the biological toxicity and drug resistance of these antibacterial hydrogels cannot meet the requirements of long-term clinical application. Imidazolium poly(ionic liquids) (PILs) are polymeric antibacterial agents exhibiting strong antibacterial properties, as they contain a strong positive charge. In this study, two imidazolium PILs, namely poly(N-butylimidazolium propiolic acid sodium) (PBP) and poly(N-(3,6-dioxaoctane) imidazolium propiolic acid sodium) (PDP), as high efficiency antibacterial agents, were synthesized by polycondensation reaction. Then, the PILs were compounded with polyethylene glycol (PEG) by a thiol-yne click reaction to prepare injectable antibacterial hydrogels. An in vitro assay showed that the injectable antibacterial hydrogels could not only quickly kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), but also had low toxicity for human skin fibroblasts cells (HSFs) and human umbilical vein endothelial cells (HUVECs), respectively. Additionally, the lipopolysaccharide (LPS) inflammation model revealed that the injectable antibacterial hydrogels also had anti-inflammatory effects, which would be advantageous to accelerate wound healing.


Author(s):  
Bin Li ◽  
Ling Wang

In this study, the starch-based material β-cyclodextrin was used as the original material to substitute petrochemical product-polyoxyethylene (HPEG) to synthesize concrete admixture polycarboxylate superplasticizer (PCE). During the synthesis, β-cyclodextrin was first grafted on the PEO chain to prepare β-CD-HPEG by click reaction. Then β-CD-HPEG was used to substitute the macromonomer HPEG to synthesize β-CD-PCE. When the substitution amount HPEG was 3%, the synthesized β-CD-PCE showed better dispersion ability.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 281
Author(s):  
Li Li ◽  
Dongyu Lei ◽  
Jiaojiao Zhang ◽  
Lu Xu ◽  
Jiashan Li ◽  
...  

Intelligent stimulus-triggered release and high drug-loading capacity are crucial requirements for drug delivery systems in cancer treatment. Based on the excessive intracellular GSH expression and pH conditions in tumor cells, a novel glutathione (GSH) and pH dual-responsive hydrogel was designed and synthesized by conjugates of glutamic acid-cysteine dendrimer with alginate (Glu-Cys-SA) through click reaction, and then cross-linked with polyethylene glycol (PEG) through hydrogen bonds to form a 3D-net structure. The hydrogel, self-assembled by the inner disulfide bonds of the dendrimer, is designed to respond to the GSH heterogeneity in tumors, with a remarkably high drug loading capacity. The Dox-loaded Glu-Cys-SA hydrogel showed controlled drug release behavior, significantly with a release rate of over 76% in response to GSH. The cytotoxicity investigation indicated that the prepared DOX-loaded hydrogel exhibited comparable anti-tumor activity against HepG-2 cells with positive control. These biocompatible hydrogels are expected to be well-designed GSH and pH dual-sensitive conjugates or polymers for efficient anticancer drug delivery.


Sign in / Sign up

Export Citation Format

Share Document