scholarly journals Preparation of MCrAlY–Al2O3 Composite Coatings with Enhanced Oxidation Resistance through a Novel Powder Manufacturing Process

2019 ◽  
Vol 28 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Mingwen Bai ◽  
Bo Song ◽  
Liam Reddy ◽  
Tanvir Hussain

Abstract MCrAlY–Al2O3 composite coatings were prepared by high-velocity oxygen fuel thermal spraying with bespoke composite powder feedstock for high-temperature applications. Powder processing via a suspension route was employed to achieve a fine dispersion of α-Al2O3 submicron particles on the MCrAlY powder surface. This was, however, compromised by ~ 50% less flowability of the feedstock during spraying. Nevertheless, the novel powder manufacturing process introduced in this study has shown potential as an alternative route to prepare tailored composite powder feedstock for the production of metal matrix composites. In addition, the newly developed MCrAlY–Al2O3 composite coatings exhibited superior oxidation resistance, compared to conventional MCrAlY coatings, with the formation of nearly exclusively Al2O3 scale after isothermal oxidation at 900 °C for 10 h. The addition of α-Al2O3 particles in the MCrAlY coatings as a second phase was found to have promoted the formation of YAG oxides (YxAlyOz) during spraying and also accelerated the outwards diffusion of Al, which resulted in enhanced oxidation resistance.

2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Yun Liu ◽  
Fan Yang ◽  
Yi Zhang ◽  
Jianping Xiao ◽  
Liang Yu ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 833
Author(s):  
Zhenping Guo ◽  
Lei Wang ◽  
Cheng Wang ◽  
Qiuliang Li

Mo–3Si–1B alloys with zirconium (1 wt.%) and yttrium oxide (1 wt.%) additives were fabricated by vibrating sintering techniques. The doped Mo–3Si–1B alloys consisted mainly of α-Mo, Mo3Si, and Mo5SiB2 (T2) phases. It was found that the grains were reduced, and the intermetallics particles were dispersed more homogeneously after the addition of Zr and Y2O3. The optimization in microstructure induced corresponding improvements in both fracture toughness and oxidation resistance. The predominant strengthening mechanisms were fine-grain strengthening and particle dispersion strengthening. In addition, fracture toughness test showed that the additions could improve the toughness of Mo–3Si–1B alloys, for which the toughening mechanism involved a crack trapping by α-Mo phases and extensive small second phase particles in the alloys. What should be paid attention to is the satisfactory oxidation resistance, both at medium-low temperature (800 °C) and high temperature (1200 °C) with doped additives.


Sign in / Sign up

Export Citation Format

Share Document