Contour detection based on the interactive response and fusion model of bilateral attention pathways

Author(s):  
Yanan Xu ◽  
Yingle Fan
Author(s):  
Gregor Volberg

Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.


2020 ◽  
Vol 3 (1) ◽  
pp. 10501-1-10501-9
Author(s):  
Christopher W. Tyler

Abstract For the visual world in which we operate, the core issue is to conceptualize how its three-dimensional structure is encoded through the neural computation of multiple depth cues and their integration to a unitary depth structure. One approach to this issue is the full Bayesian model of scene understanding, but this is shown to require selection from the implausibly large number of possible scenes. An alternative approach is to propagate the implied depth structure solution for the scene through the “belief propagation” algorithm on general probability distributions. However, a more efficient model of local slant propagation is developed as an alternative.The overall depth percept must be derived from the combination of all available depth cues, but a simple linear summation rule across, say, a dozen different depth cues, would massively overestimate the perceived depth in the scene in cases where each cue alone provides a close-to-veridical depth estimate. On the other hand, a Bayesian averaging or “modified weak fusion” model for depth cue combination does not provide for the observed enhancement of perceived depth from weak depth cues. Thus, the current models do not account for the empirical properties of perceived depth from multiple depth cues.The present analysis shows that these problems can be addressed by an asymptotic, or hyperbolic Minkowski, approach to cue combination. With appropriate parameters, this first-order rule gives strong summation for a few depth cues, but the effect of an increasing number of cues beyond that remains too weak to account for the available degree of perceived depth magnitude. Finally, an accelerated asymptotic rule is proposed to match the empirical strength of perceived depth as measured, with appropriate behavior for any number of depth cues.


2018 ◽  
Vol 30 (8) ◽  
pp. 1457
Author(s):  
Zongmin Li ◽  
Chenchen Zhou ◽  
Yanhe Gong ◽  
Yujie Liu ◽  
Hua Li

2018 ◽  
Vol 69 (2) ◽  
pp. 521-524
Author(s):  
Magda Ecaterina Antohe ◽  
Doriana Agop Forna ◽  
Cristina Gena Dascalu ◽  
Norina Consuela Forna

The application of certain digital processing techniques offers the possibility of extra accuracy in the interpretation of paraclinical examinations of this type, with profound implications in the diagnosis as well as in the hierarchy of the treatment plan. The purpose of this study is to identify the type of imaging processing for the identification of pathological elements from orthopantomographies and articular tomographies. A number of 20 orthopantomographies and 15 temporo-mandibular joint tomography have undergone through various image enhancement techniques. Various methods of image enhancement (enhancement) have been used for those procedures whereby it becomes more useful in the following aspects: specific details are highlighted; noise is eliminated; the image becomes more visually attractive. The workings were done in Corel PhotoPaint 7.0, using the automatic procedures available.The choice of a particular type of image enhancement technique has been selected for each type of pathology found in orthopantomographies or articular tomography, providing the best accuracy for an optimal imaging interpretation that underpins a precision diagnosis.Of the most useful imaging processing in the optimization of the orthopantomographic image accuracy the point-to-point transformations are to be noted. The image processing proposed in this article focused primarily on improving the radiological image attributes to highlight specific anatomical structures, and secondly, the contour detection, where it was necessary for the diagnostic purposes as well.


2021 ◽  
Vol 13 (4) ◽  
pp. 606
Author(s):  
Tee-Ann Teo ◽  
Yu-Ju Fu

The spatiotemporal fusion technique has the advantages of generating time-series images with high-spatial and high-temporal resolution from coarse-resolution to fine-resolution images. A hybrid fusion method that integrates image blending (i.e., spatial and temporal adaptive reflectance fusion model, STARFM) and super-resolution (i.e., very deep super resolution, VDSR) techniques for the spatiotemporal fusion of 8 m Formosat-2 and 30 m Landsat-8 satellite images is proposed. Two different fusion approaches, namely Blend-then-Super-Resolution and Super-Resolution (SR)-then-Blend, were developed to improve the results of spatiotemporal fusion. The SR-then-Blend approach performs SR before image blending. The SR refines the image resampling stage on generating the same pixel-size of coarse- and fine-resolution images. The Blend-then-SR approach is aimed at refining the spatial details after image blending. Several quality indices were used to analyze the quality of the different fusion approaches. Experimental results showed that the performance of the hybrid method is slightly better than the traditional approach. Images obtained using SR-then-Blend are more similar to the real observed images compared with images acquired using Blend-then-SR. The overall mean bias of SR-then-Blend was 4% lower than Blend-then-SR, and nearly 3% improvement for overall standard deviation in SR-B. The VDSR technique reduces the systematic deviation in spectral band between Formosat-2 and Landsat-8 satellite images. The integration of STARFM and the VDSR model is useful for improving the quality of spatiotemporal fusion.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Gangqiang Zhang ◽  
Wei Zheng ◽  
Wenjie Yin ◽  
Weiwei Lei

The launch of GRACE satellites has provided a new avenue for studying the terrestrial water storage anomalies (TWSA) with unprecedented accuracy. However, the coarse spatial resolution greatly limits its application in hydrology researches on local scales. To overcome this limitation, this study develops a machine learning-based fusion model to obtain high-resolution (0.25°) groundwater level anomalies (GWLA) by integrating GRACE observations in the North China Plain. Specifically, the fusion model consists of three modules, namely the downscaling module, the data fusion module, and the prediction module, respectively. In terms of the downscaling module, the GRACE-Noah model outperforms traditional data-driven models (multiple linear regression and gradient boosting decision tree (GBDT)) with the correlation coefficient (CC) values from 0.24 to 0.78. With respect to the data fusion module, the groundwater level from 12 monitoring wells is incorporated with climate variables (precipitation, runoff, and evapotranspiration) using the GBDT algorithm, achieving satisfactory performance (mean values: CC: 0.97, RMSE: 1.10 m, and MAE: 0.87 m). By merging the downscaled TWSA and fused groundwater level based on the GBDT algorithm, the prediction module can predict the water level in specified pixels. The predicted groundwater level is validated against 6 in-situ groundwater level data sets in the study area. Compare to the downscaling module, there is a significant improvement in terms of CC metrics, on average, from 0.43 to 0.71. This study provides a feasible and accurate fusion model for downscaling GRACE observations and predicting groundwater level with improved accuracy.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Jing Yan ◽  
Bin Zhang ◽  
Shuaitong Zhang ◽  
Jingliang Cheng ◽  
Xianzhi Liu ◽  
...  

AbstractGliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.


Sign in / Sign up

Export Citation Format

Share Document