Self-tuning measurement fusion Kalman filter with correlated measurement noises

2009 ◽  
Vol 26 (5) ◽  
pp. 614-622 ◽  
Author(s):  
Yuan Gao ◽  
Chenjian Ran ◽  
Zili Deng
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Xin Wang ◽  
Shu-Li Sun

For the linear discrete stochastic systems with multiple sensors and unknown noise statistics, an online estimators of the noise variances and cross-covariances are designed by using measurement feedback, full-rank decomposition, and weighted least squares theory. Further, a self-tuning weighted measurement fusion Kalman filter is presented. The Fadeeva formula is used to establish ARMA innovation model with unknown noise statistics. The sampling correlated function of the stationary and reversible ARMA innovation model is used to identify the noise statistics. It is proved that the presented self-tuning weighted measurement fusion Kalman filter converges to the optimal weighted measurement fusion Kalman filter, which means its asymptotic global optimality. The simulation result of radar-tracking system shows the effectiveness of the presented algorithm.


1994 ◽  
Vol 116 (3) ◽  
pp. 550-553 ◽  
Author(s):  
Chung-Wen Chen ◽  
Jen-Kuang Huang

This paper proposes a new algorithm to estimate the optimal steady-state Kalman filter gain of a linear, discrete-time, time-invariant stochastic system from nonoptimal Kalman filter residuals. The system matrices are known, but the covariances of the white process and measurement noises are unknown. The algorithm first derives a moving average (MA) model which relates the optimal and nonoptimal residuals. The MA model is then approximated by inverting a long autoregressive (AR) model. From the MA parameters the Kalman filter gain is calculated. The estimated gain in general is suboptimal due to the approximations involved in the method and a finite number of data. However, the numerical example shows that the estimated gain could be near optimal.


2021 ◽  
Author(s):  
Nalini Arasavali ◽  
Sasibhushanarao Gottapu

Abstract Kalman filter (KF) is a widely used navigation algorithm, especially for precise positioning applications. However, the exact filter parameters must be defined a priori to use standard Kalman filters for coping with low error values. But for the dynamic system model, the covariance of process noise is a priori entirely undefined, which results in difficulties and challenges in the implementation of the conventional Kalman filter. Kalman Filter with recursive covariance estimation applied to solve those complicated functional issues, which can also be used in many other applications involving Kalaman filtering technology, a modified Kalman filter called MKF-RCE. While this is a better approach, KF with SAR tuned covariance has been proposed to resolve the problem of estimation for the dynamic model. The data collected at (x: 706970.9093 m, y: 6035941.0226 m, z: 1930009.5821 m) used to illustrate the performance analysis of KF with recursive covariance and KF with computational intelligence correction by means of SAR (Search and Rescue) tuned covariance, when the covariance matrices of process and measurement noises are completely unknown in advance.


Author(s):  
Akram Nikfetrat ◽  
Reza Mahboobi Esfanjani

A self-tuning Kalman filter is introduced to reduce the destructive effects of the delayed and lost measurements in the guidance systems employing command to line-of-sight strategy. A sequence of Bernoulli distributed random variables with uncertain probabilities are used to model the delayed and lost observations. Besides the state estimation, the uncertain parameters of the measurement model are identified online using the covariance of innovation sequence. Simulation results are given to demonstrate the merits of the suggested approach.


Sign in / Sign up

Export Citation Format

Share Document