Modeling Spatio-temporal Drought Events Based on Multi-temporal, Multi-source Remote Sensing Data Calibrated by Soil Humidity

Author(s):  
Hanyu Li ◽  
Hermann Kaufmann ◽  
Guochang Xu
2021 ◽  
Vol 13 (12) ◽  
pp. 2333
Author(s):  
Lilu Zhu ◽  
Xiaolu Su ◽  
Yanfeng Hu ◽  
Xianqing Tai ◽  
Kun Fu

It is extremely important to extract valuable information and achieve efficient integration of remote sensing data. The multi-source and heterogeneous nature of remote sensing data leads to the increasing complexity of these relationships, and means that the processing mode based on data ontology cannot meet requirements any more. On the other hand, the multi-dimensional features of remote sensing data bring more difficulties in data query and analysis, especially for datasets with a lot of noise. Therefore, data quality has become the bottleneck of data value discovery, and a single batch query is not enough to support the optimal combination of global data resources. In this paper, we propose a spatio-temporal local association query algorithm for remote sensing data (STLAQ). Firstly, we design a spatio-temporal data model and a bottom-up spatio-temporal correlation network. Then, we use the method of partition-based clustering and the method of spectral clustering to measure the correlation between spatio-temporal correlation networks. Finally, we construct a spatio-temporal index to provide joint query capabilities. We carry out local association query efficiency experiments to verify the feasibility of STLAQ on multi-scale datasets. The results show that the STLAQ weakens the barriers between remote sensing data, and improves their application value effectively.


2017 ◽  
Author(s):  
Gorka Mendiguren ◽  
Julian Koch ◽  
Simon Stisen

Abstract. Distributed hydrological models are traditionally evaluated against discharge stations, emphasizing the temporal and neglecting the spatial component of a model. The present study widens the traditional paradigm by highlighting spatial patterns of evapotranspiration (ET), a key variable at the land-atmosphere interface, obtained from two different approaches at the national scale of Denmark. The first approach is based on a national water resources model (DK-model), using the MIKE-SHE model code, and the second approach utilizes a two source energy balance model (TSEB) driven mainly by satellite remote sensing data. The main hypothesis of the study is that while both approaches are essentially estimates, the spatial patterns of the remote sensing based approach are explicitly driven by observed land surface temperature and therefore represent the most direct spatial pattern information of ET; enabling its use for distributed hydrological model evaluation. Ideally the hydrological model simulation and remote sensing based approach should present similar spatial patterns and driving mechanism of ET. However, the spatial comparison showed that the differences are significant and indicating insufficient spatial pattern performance of the hydrological model. The differences in spatial patterns can partly be explained by the fact that the hydrological model is configured to run in 6 domains that are calibrated independently from each other, as it is often the case for large scale multi-basin calibrations. Furthermore, the model incorporates predefined temporal dynamics of Leaf Area Index (LAI), root depth (RD) and Crop coefficient (Kc) for each land cover type. This zonal approach of model parametrization ignores the spatio-temporal complexity of the natural system. To overcome this limitation, the study features a modified version of the DK-Model in which LAI, RD, and KC are empirically derived using remote sensing data and detailed soil property maps in order to generate a higher degree of spatio-temporal variability and spatial consistency between the 6 domains. The effects of these changes are analyzed by using the empirical orthogonal functions (EOF) analysis to evaluate spatial patterns. The EOF-analysis shows that including remote sensing derived LAI, RD and KC in the distributed hydrological model adds spatial features found in the spatial pattern of remote sensing based ET.


2020 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Yaokui Cui ◽  
Xi Chen ◽  
Wentao Xiong ◽  
Lian He ◽  
Feng Lv ◽  
...  

Surface soil moisture (SM) plays an essential role in the water and energy balance between the land surface and the atmosphere. Low spatio-temporal resolution, about 25–40 km and 2–3 days, of the commonly used global microwave SM products limits their application at regional scales. In this study, we developed an algorithm to improve the SM spatio-temporal resolution using multi-source remote sensing data and a machine-learning model named the General Regression Neural Network (GRNN). First, six high spatial resolution input variables, including Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), albedo, Digital Elevation Model (DEM), Longitude (Lon) and Latitude (Lat), were selected and gap-filled to obtain high spatio-temporal resolution inputs. Then, the GRNN was trained at a low spatio-temporal resolution to obtain the relationship between SM and input variables. Finally, the trained GRNN was driven by the high spatio-temporal resolution input variables to obtain high spatio-temporal resolution SM. We used the Fengyun-3B (FY-3B) SM over the Tibetan Plateau (TP) to test the algorithm. The results show that the algorithm could successfully improve the spatio-temporal resolution of FY-3B SM from 0.25° and 2–3 days to 0.05° and 1-day over the TP. The improved SM is consistent with the original product in terms of both spatial distribution and temporal variation. The high spatio-temporal resolution SM allows a better understanding of the diurnal and seasonal variations of SM at the regional scale, consequently enhancing ecological and hydrological applications, especially under climate change.


Sign in / Sign up

Export Citation Format

Share Document