scholarly journals Oxidative desulfurization of diesel fuel oil using supported Fenton catalysts and assisted with ultrasonic energy

2019 ◽  
Vol 16 (5) ◽  
pp. 1176-1184 ◽  
Author(s):  
Roberto Flores ◽  
Arturo Rodas ◽  
Raquel Gasperin
Author(s):  
Elyas Rostami ◽  
Hossein Mahdavy Moghaddam

In this study, the atomization of heavy fuel oil (Mazut) and diesel fuel at different pressures is compared experimentally. Also, the effects of temperature on the Mazut fuel atomization are investigated experimentally. Mass flow rate, discharge coefficient, wavelength, liquid film thickness, ligament diameter, spray angle, breakup length, and sature mean diameter are obtained for the Mazut and diesel fuel. Fuels spray images at different pressures and temperatures are recorded using the shadowgraphy method and analyzed by the image processing technique. Error analysis is performed for the experiments, and the percentage of uncertainty for each parameter is reported. The experimental results are compared with the theoretical results. Also, Curves are proposed and plotted to predict changes in the behavior of atomization parameters. Diesel fuel has less viscosity than Mazut fuel. Diesel fuel has shorter breakup length, wavelength, liquid film thickness, and sature mean diameter than Mazut fuel at the same pressure. Diesel fuel has a larger spray angle and a larger discharge coefficient than Mazut fuel at the same pressure. As the pressure and temperature increase, fuel atomization improves. The viscosity of Mazut fuel is decreased by temperature increase. As the fuel injection pressure and temperature increase, breakup length, wavelength, liquid film thickness, and sature mean diameter decrease; also, spray angle increases.


2014 ◽  
Vol 1033-1034 ◽  
pp. 85-89 ◽  
Author(s):  
Guo Xian Yu ◽  
Qian Zhong ◽  
Mei Jin ◽  
Ping Lu

Ultrasound-assisted oxidative desulfurization (UAODS) of diesel fuel in H2O2/Heteropoly acid/Solvent systems, was investigated. Effects of solvent, catalyst, ultrasound and reaction temperature on the oxidation desulfurization of diesel fuel were investigated. When MPA/oil was 2%wt, methanol/diesel fuel was 20%wt, ultrasound power was 400 W and ultrasound time was 10 min, the sulfur content of diesel fuel was decreased from 211 ppm to 19 ppm. The use of ultrasonic irradiation in H2O2/Heteropoly acid/Solvent system significantly improved the efficiency of the oxidation reaction, and solvent was helpful to make the oxidative reaction happen in the same one phase.


2012 ◽  
Vol 30 (23) ◽  
pp. 2471-2477 ◽  
Author(s):  
M.-Z. Sun ◽  
B. Zhang ◽  
Y.-H. Wu ◽  
J. Zhu ◽  
D.-Z. Zhao

2021 ◽  
Vol 66 (05) ◽  
pp. 106-108
Author(s):  
Aytac Turab qızı Hüseynova ◽  

The Oil Refinery of Heydar Aliyev was created in July 1953 as a new oil refining plant Baki. The combined atmospheric vacuum plant is the main plant at the oil refining factory and its starting capacity produces 6 million tons of crude oil. In 2010, 43,000 tons A-98, 1.18 tons of A-92 and 19,700 tons of gasoline A-80. At the same time, 600 400t kerosene, 214,000 diesel fuels, 214,000 tons. Liquid gas, 267 500t coke and 220 600t. With this investigation, the history of the oil refinery and the details of modernization were considered. 21 out of 24 types of Azerbaijani oil are processed at the Baku Oil Refinery named after Heydar Aliyev, of which 15 types of oil products, including gasoline, aviation kerosene, diesel fuel, fuel oil, petroleum coke, etc. are produced. The plant fully meets the needs of the republic in oil products. In addition, 45% of oil products are exported to foreign countries. Key words: Azerbaijani, oil, recycling, factory, modernization


2016 ◽  
Vol 24 (12) ◽  
pp. 10976-10991 ◽  
Author(s):  
Thorsten Streibel ◽  
Jürgen Schnelle-Kreis ◽  
Hendryk Czech ◽  
Horst Harndorf ◽  
Gert Jakobi ◽  
...  

2021 ◽  
pp. 88-96
Author(s):  
D. Muktaly ◽  
◽  
Zh.K. Myltykbaeva ◽  
M.B. Smaiyl ◽  
◽  
...  

Continuous growth in consumption of oil in the world, as well as ever-increasing quality requirements stimulate the search for new scientific and technological solutions to directionally affect the characteristics of petroleum products, including their chemical composition. The advantages of oxidative desulfurization before hydrotreating are the absence of the need to use hydrogen, as well as small capital and energy costs, since the method does not require high temperatures and pressures. The purpose of this work was to study the oxidation process of diesel fuel and to search for the optimal mode of oxidative desulfurization of diesel fuel in the presence of transition metals salts with the addition of mineral acids. The object of the study is a straight-run diesel fraction of the Pavlodar Petrochemical Plant with boiling temperatures of 180-350°C. The oxidation process was carried out with hydrogen peroxide in the presence of salts of the transition metals molybdenum, vanadium and tungsten. The article defined the basic physico-chemical characteristics of straight-run and desulfurized diesel fractions. The optimal catalyst (Na2MoO4) was selected at a molar ratio of metal to sulfur of 1:100 for the oxidation process of straight-run diesel fractions. As a result of oxidative desulfurization of diesel fuel in the presence of sodium molybdenum perox complexes, the total sulfur content decreased by 42.9%, and with the addition of sulfuric acid by 56.5%. An increase in the cetane index from 56.3 to 58.6 was revealed in the presence of sodium molybdate with the addition of sulfuric acid.


Author(s):  
Bulent Özdalyan ◽  
Recep Ç. Orman

The heat values of waste mineral oils are equal to the heat value of the fuel oil. However, heat value alone is not sufficient for the use of waste mineral oils. as fuel. However, the critical physical properties of fuels such as density and viscosity need to be adapted to the system in order to be used. In this study, the engine oils used in the first 10,000 km of the vehicles were used as waste mineral oil. An organic-based Mn additive was synthesized to improve the properties of the waste mineral oil. It was observed that mixing the Mn additive with the waste mineral oil at different doses (4, 8, 12 and 16 ppm) improves the viscosity of the waste oil and the flash point. The resulting fuel was evaluated for emission using different loads in a 5 kW capacity generator to compare the fuel with standard diesel fuel and to determine the effect of Mn addition. In the experimental study, it was observed that the emission characteristics of the fuel obtained from waste mineral oil were worse than diesel fuel, but some improvement with Mn addition. As a result, we found that the use of waste mineral oils in engines in fuel standards was not appropriate, but may be improved with additives.


2015 ◽  
Vol 17 (2) ◽  
pp. 119 ◽  
Author(s):  
Z.R. Ismagilov ◽  
M.A. Kerzhentsev ◽  
S.A. Yashnik ◽  
S.R. Khairulin ◽  
A.V. Salnikov ◽  
...  

<p>An effective gas-phase oxidative desulfurization (ODS) process was proposed. The process was studied in a laboratory reactor with a proprietary catalyst at 300-400 ºС and ambient pressure with model fuels represented by thiophene, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) dissolved in octane, isooctane or toluene. The reactivity of different sulfur containing molecules in ODS was shown to increase in the sequence: thiophene &lt; DBT &lt; DMDBT. The main sulfur containing product of oxidation of these compounds was SO<sub>2</sub>. During the gas-phase ODS both processes of sulfur species oxidation and processes of their adsorption were observed and studied. Based on the conducted studies, different ODS process designs comprising its integration with adsorption and regeneration processes and with conventional hydrodesulfurization (HDS) process were proposed. One scheme is based on alternating regimes of ODS and catalyst regeneration in two reactors: sulfur is removed from organic feedstock by oxidation and adsorption in one reactor while simultaneous regeneration of the catalyst that has accumulated sulfur  compounds takes place in another reactor. Two other schemes are based on joint use of ODS and HDS. The conventional HDS process is most effective for removal of low-boiling sulfur containing compounds reactive with respect to hydrogen, while removal of refractory sulfur compounds, such as DMDBT is more easily achieved by gas phase ODS. Thus the combination of these processes is expected to be most efficient for deep desulfurization of diesel fuel.</p>


Sign in / Sign up

Export Citation Format

Share Document