Axial Compression Behavior of the High-Strength Concrete Squat Wall with Distributed Steel Tubes

2019 ◽  
Vol 23 (8) ◽  
pp. 3383-3396 ◽  
Author(s):  
Zuozhou Zhao ◽  
Guangzhao Fan ◽  
Xiaogang He
2018 ◽  
Vol 22 (5) ◽  
pp. 1089-1105 ◽  
Author(s):  
Xizhi Zhang ◽  
Sixin Niu ◽  
Jia-Bao Yan ◽  
Shaohua Zhang

In order to simulate the seismic behaviour of the prestressed high-strength concrete piles under working state, six full-scale prestressed high-strength concrete piles were tested under combined axial compression and cyclic horizontal loads. Different axial compression levels and prestressing levels of prestressed tendons were studied in this test programme. The failure mode, bending resistance, displacement ductility, stiffness degradation and energy dissipation of the prestressed high-strength concrete piles under different loading scenarios were measured and analysed. Test results indicated that the axial compression ratio and prestressing level of prestressed tendon significantly influenced the seismic performance of prestressed high-strength concrete piles. Theoretical models were developed to predict cracking, yielding and ultimate bending resistances of the prestressed high-strength concrete pile under combined compression and bending. Finite element model was also developed to simulate the ultimate strength behaviour of the prestressed high-strength concrete pile under combined compression and flexural bending. The accuracies of the theoretical and finite element model were checked through validations of their predictions against the reported test results.


2020 ◽  
Vol 164 ◽  
pp. 105765 ◽  
Author(s):  
Binglin Lai ◽  
J.Y. Richard Liew ◽  
Akshay Venkateshwaran ◽  
Shan Li ◽  
Mingxiang Xiong

2012 ◽  
Vol 479-481 ◽  
pp. 2041-2045
Author(s):  
Yue Qi

Based on experimental research on plain concrete columns with high strength concrete core, the formula to predict the bearing capacity of concrete columns with high strength concrete core under axial compression loading was brought forward in previous paper, in order to verify the formula whether right, axial compression test including 3 concrete columns with high strength concrete core and 1 ordinary reinforced concrete column were completed, and the failure characteristic was analyzed additionally. According to experimental results, it can be shown that the failure modes of concrete columns with high strength concrete core are similar to that of ordinary reinforced concrete columns, however, the bearing capacity of concrete columns with high strength concrete core is significant higher compared with that of ordinary reinforced concrete column; the results of the bearing capacity obtained by the formula (2) was in good agreement with the experimental results.


1994 ◽  
Vol 21 (2) ◽  
pp. 207-218 ◽  
Author(s):  
Helmut G. L. Prion ◽  
Jens Boehme

The results of an investigation into the behaviour of thin-walled steel tubes filled with high strength concrete are presented. The main emphasis is placed on the level of ductility that can be achieved, considering the fact that neither high strength concrete nor thin steel tubes are individually able to absorb significant amounts of energy under cyclic loading. Results of 26 tests on specimens with a diameter of 152 mm and a wall thickness of 1.7 mm, filled with concrete of characteristic compressive strength ranging between 73 and 92 MPa, are reported. Load combinations on the specimens range from pure axial compression, through various combinations of axial load and bending, to pure bending. Three specimens were subjected to cyclic loading. Test results are compared with design models that are used in current code specifications. Key words: steel tubes, concrete, composite, beam-column, beam, column, experimental.


Sign in / Sign up

Export Citation Format

Share Document