scholarly journals Effects of Load Reductions on Phosphorus Concentrations in a Baltic Estuary—Long-Term Changes, Seasonal Variation, and Management Implications

2020 ◽  
Vol 44 (1) ◽  
pp. 30-43
Author(s):  
Jakob Walve ◽  
Maria Sandberg ◽  
Ragnar Elmgren ◽  
Christer Lännergren ◽  
Ulf Larsson

AbstractNutrient concentrations in coastal waters are influenced not only by land runoff, point sources, and water exchange with the sea but are also modified by settlement to and release from sediments. This complicates evaluation of measures to reduce nutrient loads. We used a mass-balance box model to calculate long-term (1968–2015) and seasonal source contributions to phosphorus (P) concentrations and cycling in the stratified Stockholm inner archipelago (IA), Baltic Sea. A drastic reduction of sewage P loads in the early 1970s reduced sewage from the major to a minor P source. Further P load reductions in the 1990s cut the direct contribution from the sewage point sources to the annual mean surface water P concentration from 10 μg l−1 (25%) to < 4 μg l−1 (12%). The largest contributions to the surface water P concentration are now (from 1996) inflowing seawater (37%), freshwater (25%), and P recycling from sediments below 20 m depth (26%). Variations in freshwater flushing give higher P concentrations in dry years, when dilution of P inputs from sediments and sewage is small, while in wet years, these inputs are greatly diluted. Source-partitioned phosphate uptake shows that the spring bloom is fueled mainly by P of seawater and freshwater origin, while the contribution from sewage point sources is minor. Since sediment P release is mostly recycled P from the settled spring bloom, the P inputs from seawater and freshwater are now the major drivers of the IA P cycle. Recycling of P from sediments boosts surface water P concentrations in autumn and winter, affecting management target concentrations.

2000 ◽  
Vol 42 (1-2) ◽  
pp. 147-152 ◽  
Author(s):  
B. Herut ◽  
N. Kress ◽  
H. Hornung

This study represents the first attempt to evaluate the nutrient load introduced into the coastal waters by the rivers along the Mediterranean coast of Israel. Measurements of nutrient concentrations (phosphate, ammonium, nitrate, nitrite, silicic acid) at two or three stations along the lower river reaches (11 rivers) were carried out annually from 1990 up to 1998. Combining the nutrient concentrations with the monthly riverine discharges we assessed the nutrient load. In general, most of the coastal rivers contain high nutrient contamination level, compared to the criteria adopted by NOAA (USA) for coastal river estuaries. The high degree of contamination is attributed to extreme low natural flow combined with the discharge of domestic and industrial wastes, and with agriculture runoff. In terms of nutrient concentrations, the Kishon River is the most polluted, followed by the Soreq, Poleg and Alexander Rivers. The preliminary estimate is that the coastal rivers transport between ~2000 to 6000 tons of dissolved inorganic nitrogen (DIN) and between ~250–800 tons of dissolved inorganic phosphorus (DIP) to the sea. An additional 3500 and 3000 tons of DIN and DIP, respectively, are supplied through the Kishon River. The load of the Poleg River is unknown (no discharge data) but expected to be significant based on nutrient concentration measured. The total load of the coastal rivers constitutes a major component among the other land-base point sources such as the Gush Dan outfall. Our estimate probably represents minimal values, as it does not include diffused input of agricultural runoff nor the riverine particulate and dissolved organic nutrient loads (which are unknown).


Author(s):  
Laima Berzina ◽  
Ritvars Sudars

Seasonal Characterisation and Trends Study of Nutrient Concentrations in Surface Water from Catchments with Intensive Livestock Farming Temporal changes in observed nitrogen and phosphorus losses to surface water were studied in 3 agricultural catchments in order to evaluate the achievement of water protection targets in Latvia. The aim of this study is to investigate the water quality measures in high density livestock farming catchments. Long-term monitoring data (years 1996-2008) of water quality used in the analysis show a high annual and monthly variability of nutrients. The results demonstrate little or no reduction of nutrient concentrations in surface water. The results suggest that water protection measures for agricultural production need to be further intensified.


2018 ◽  
Vol 22 (1) ◽  
pp. 487-508 ◽  
Author(s):  
Liang Yu ◽  
Joachim Rozemeijer ◽  
Boris M. van Breukelen ◽  
Maarten Ouboter ◽  
Corné van der Vlugt ◽  
...  

Abstract. The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater–surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1531
Author(s):  
Konstantinos Stefanidis ◽  
Aikaterini Christopoulou ◽  
Serafeim Poulos ◽  
Emmanouil Dassenakis ◽  
Elias Dimitriou

Reduction of nutrient loadings is often prioritized among other management measures for improving the water quality of freshwaters within the catchment. However, urban point sources and agriculture still thrive as the main drivers of nitrogen and phosphorus pollution in European rivers. With this article we present a nationwide assessment of nitrogen and phosphorus loads that 18 large rivers in Greece receive with the purpose to assess variability among seasons, catchments, and river types and distinguish relationships between loads and land uses of the catchment. We employed an extensive dataset of 636 field measurements of nutrient concentrations and river discharges to calculate nitrogen and phosphorus loads. Descriptive statistics and a cluster analysis were conducted to identify commonalties and differences among catchments and seasons. In addition a network analysis was conducted and its modularity feature was used to detect commonalities among rivers and sampling sites with regard to their nutrient loads. A correlation analysis was used to identify major possible connections between types of land uses and nutrient loads. The results indicated that the rivers Alfeios, Strymonas, and Aliakmonas receive the highest inorganic nitrogen loads while the highest inorganic phosphorus loads were calculated for the rivers Strymonas, Aliakmonas, and Axios. Concerning the temporal variation of loads, inorganic nitrogen presented a peak on March and gradually declined until October when the dry period typically ends for most regions of Greece. Inorganic phosphorus loads had the highest average value in August and the lowest in October. Thus, our findings confirmed the presence of a typical seasonal variation in nitrogen loads that follows the seasonality in hydrology where high surface runoff during the wet months contribute to higher river discharges and higher nitrogen loads from the catchment. On the contrary, high phosphorus loads persisted during dry months that could be attributed to a dilution effect. Furthermore, the results imply a clear connection between agriculture and both nitrogen and phosphorus. Overall, this work presents extensive information on the nitrogen and phosphorus loads that major rivers in Greece receive that can largely aid water managers to adapt and revise basin management plans in accordance with agricultural management (e.g., which months farmers should reduce the use of fertilizers) with the purpose of meeting the environmental targets defined by the Water Framework Directive (WFD).


1999 ◽  
Vol 39 (12) ◽  
pp. 197-205 ◽  
Author(s):  
S. E. Larsen ◽  
B. Kronvang ◽  
J. Windolf ◽  
L. M. Svendsen

The Danish Monitoring Programme reveals that diffuse sources are currently the major source of nutrient input to the aquatic environment. Nutrient concentration and loading data for about 50 small agricultural catchments and seven undisturbed catchments reveal that agriculture is the major diffuse source, average annual nitrogen (N) and phosphorus (P) concentration and loading being respectively, 5.1- and 6.8-fold, and 2.7- and 3.9-fold greater in streams draining agricultural catchments than in streams draining undisturbed catchments during the period 1989–96. A statistical trend analysis (discharge adjusted Mann-Kendall seasonal test) applied to long-term time series (1967–96) in three streams revealed an upward trend in nitrate concentration in Skjern Å (p&lt;0.1%), Odense Å (p=5.7%) and GudenÅ (p=11%) during the 15-year period 1967-81, whereas there was no significant trend during the following 15-year period (1982-96). There was a significant downward trend in P concentration in all three streams over the 30-year period. Statistical analysis of recent trends (1989-96) in 77 (N) and 40 (P) streams draining small agricultural catchments revealed a median annual decrease of 0.073 mg N 1−1 and 0.0034 mg P 1−1 (Sen's slope estimator). The observed trend was only significant in 6 of the streams tested at the 5% level and 27 at the 10% level, however. The median annual decrease in N and P concentrations was higher in streams draining loamy catchments (0.092 mg N 1−1 and 0.0035 mg P 1−1) than in streams draining sandy catchments (0.040 mg N 1−1 and 0.0005 mg P 1−1).


2017 ◽  
Author(s):  
Liang Yu ◽  
Joachim Rozemeijer ◽  
Boris M. van Breukelen ◽  
Maarten Ouboter ◽  
Corné van der Vlugt ◽  
...  

Abstract. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. Twenty-three variables (concentrations of Total-N, Total-P, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed. The results imply that groundwater is a large source of nutrients in these mixed urban/agricultural catchments. It is confirmed by high correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns. The groundwater nutrient concentrations exceeded the surface water Environmental Quality Standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. The elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water sustainable cities.


1988 ◽  
Vol 19 (2) ◽  
pp. 99-120 ◽  
Author(s):  
A. Lepistö ◽  
P. G. Whitehead ◽  
C. Neal ◽  
B. J. Cosby

A modelling study has been undertaken to investigate long-term changes in surface water quality in two contrasting forested catchments; Yli-Knuutila, with high concentrations of base cations and sulphate, in southern Finland; and organically rich, acid Liuhapuro in eastern Finland. The MAGIC model is based on the assumption that certain chemical processes (anion retention, cation exchange, primary mineral weathering, aluminium dissolution and CO2 solubility) in catchment soils are likely keys to the responses of surface water quality to acidic deposition. The model was applied for the first time to an organically rich catchment with high quantities of humic substances. The historical reconstruction of water quality at Yli-Knuutila indicates that the catchment surface waters have lost about 90 μeq l−1 of alkalinity in 140 years, which is about 60% of their preacidification alkalinity. The model reproduces the declining pH levels of recent decades as indicated by paleoecological analysis. Stream acidity trends are investigated assuming two scenarios for future deposition. Assuming deposition rates are maintained in the future at 1984 levels, the model indicates that stream pH is likely to continue to decline below presently measured levels. A 50% reduction in deposition rates would likely result in an increase in pH and alkalinity of the stream, although not to estimated preacidification levels. Because of the high load of organic acids to the Liuhapuro stream it has been acid before atmospheric pollution; a decline of 0.2 pH-units was estimated with increasing leaching of base cations from the soil despite the partial pH buffering of the system by organic compounds.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1109
Author(s):  
Nobuaki Kimura ◽  
Kei Ishida ◽  
Daichi Baba

Long-term climate change may strongly affect the aquatic environment in mid-latitude water resources. In particular, it can be demonstrated that temporal variations in surface water temperature in a reservoir have strong responses to air temperature. We adopted deep neural networks (DNNs) to understand the long-term relationships between air temperature and surface water temperature, because DNNs can easily deal with nonlinear data, including uncertainties, that are obtained in complicated climate and aquatic systems. In general, DNNs cannot appropriately predict unexperienced data (i.e., out-of-range training data), such as future water temperature. To improve this limitation, our idea is to introduce a transfer learning (TL) approach. The observed data were used to train a DNN-based model. Continuous data (i.e., air temperature) ranging over 150 years to pre-training to climate change, which were obtained from climate models and include a downscaling model, were used to predict past and future surface water temperatures in the reservoir. The results showed that the DNN-based model with the TL approach was able to approximately predict based on the difference between past and future air temperatures. The model suggested that the occurrences in the highest water temperature increased, and the occurrences in the lowest water temperature decreased in the future predictions.


2021 ◽  
Vol 9 (3) ◽  
pp. 501
Author(s):  
Zhimin Zhang ◽  
Qinghui Deng ◽  
Lingling Wan ◽  
Xiuyun Cao ◽  
Yiyong Zhou ◽  
...  

Aquaculture is among the most important and fastest growing agriculture sectors worldwide; however, it generates environmental impacts by introducing nutrient accumulations in ponds, which are possibly different and further result in complex biological processes in the sediments based on diverse farming practices. In this study, we investigated the effects of long-term farming practices of representative aquatic animals dominated by grass carp (GC, Ctenopharyngodon idella) or Chinese mitten crab (CMC, Eriocheir sinensis) on the bacterial community and enzyme activity of sediments from more than 15 years of aquaculture ponds, and the differences associated with sediment properties were explored in the two farming practices. Compared to CMC ponds, GC ponds had lower contents of TC, TN, and TP in sediments, and similar trends for sediment pH and moisture content. Sediment bacterial communities were significantly different between GC and CMC ponds, with higher bacterial richness and diversity in GC ponds. The bacterial communities among the pond sediments were closely associated with sediment pH, TC, and TN. Additionally, the results showed profoundly lower activities of β-1,4-glucosidase, leucine aminopeptidase, and phosphatase in the sediments of GC ponds than CMC ponds. Pearson’s correlation analysis further revealed strong positive correlations between the hydrolytic enzyme activities and nutrient concentrations among the aquaculture ponds, indicating microbial enzyme regulation response to sediment nutrient dynamics. Our study herein reveals that farming practices of fish and crab differently affect bacterial communities and enzymatic activities in pond sediments, suggesting nutrient-driven sediment biological processes in aquaculture ponds for different farming practices.


Sign in / Sign up

Export Citation Format

Share Document