Asymptotic behavior of dependence measures for Ornstein-Uhlenbeck model based on long memory processes
AbstractIn this paper, we study the long memory property of two processes based on the Ornstein-Uhlenbeck model. Their are extensions of the Ornstein-Uhlenbeck system for which in the classic version we replace the standard Brownian motion (or other L$$\acute{e}$$ e ´ vy process) by long range dependent processes based on $$\alpha -$$ α - stable distribution. One way of characterizing long- and short-range dependence of second order processes is in terms of autocovariance function. However, for systems with infinite variance the classic measure is not defined, therefore there is a need to consider alternative measures on the basis of which the long range dependence can be recognized. In this paper, we study three alternative measures adequate for $$\alpha -$$ α - stable-based processes. We calculate them for examined processes and indicate their asymptotic behavior. We show that one of the analyzed Ornstein-Uhlenbeck process exhibits long memory property while the second does not. Moreover, we show the ratio of two introduced measures is limited which can be a starting point to introduction of a new estimation method of stability index for analyzed Ornstein-Uhlenbeck processes.