asymptotic behavior
Recently Published Documents


TOTAL DOCUMENTS

6982
(FIVE YEARS 994)

H-INDEX

84
(FIVE YEARS 9)

Author(s):  
S. Şule Şener Kiliç

In this paper, we study the generalized ([Formula: see text])-dimensional Hietarinta equation which is investigated by utilizing Hirota’s bilinear method. Also, the bilinear form is obtained, and the N-soliton solutions are constructed. In addition, multi-wave and breather wave solutions of the addressed equation with specific coefficients are presented. Finally, under certain conditions, the asymptotic behavior of solutions is analyzed in both methods. Moreover, we employ the linear superposition principle to determine [Formula: see text]-soliton wave solutions for the generalized ([Formula: see text])-dimensional Hietarinta equation.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 180
Author(s):  
Oleg Avsyankin

The multidimensional integral equation of second kind with a homogeneous of degree (−n) kernel is considered. The special class of continuous functions with a given asymptotic behavior in the neighborhood of zero is defined. It is proved that, if the free term of the integral equation belongs to this class and the equation itself is solvable, then its solution also belongs to this class. To solve this problem, a special research technique is used. The above-mentioned technique is based on the decomposition of both the solution and the free term in spherical harmonics.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Huyuan Chen ◽  
Laurent Véron

Abstract We provide bounds for the sequence of eigenvalues { λ i ⁢ ( Ω ) } i {\{\lambda_{i}(\Omega)\}_{i}} of the Dirichlet problem L Δ ⁢ u = λ ⁢ u ⁢  in  ⁢ Ω , u = 0 ⁢  in  ⁢ ℝ N ∖ Ω , L_{\Delta}u=\lambda u\text{ in }\Omega,\quad u=0\text{ in }\mathbb{R}^{N}% \setminus\Omega, where L Δ {L_{\Delta}} is the logarithmic Laplacian operator with Fourier transform symbol 2 ⁢ ln ⁡ | ζ | {2\ln\lvert\zeta\rvert} . The logarithmic Laplacian operator is not positively defined if the volume of the domain is large enough. In this article, we obtain the upper and lower bounds for the sum of the first k eigenvalues by extending the Li–Yau method and Kröger’s method, respectively. Moreover, we show the limit of the quotient of the sum of the first k eigenvalues by k ⁢ ln ⁡ k {k\ln k} is independent of the volume of the domain. Finally, we discuss the lower and upper bounds of the k-th principle eigenvalue, and the asymptotic behavior of the limit of eigenvalues.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Yasunori Kimura ◽  
Keisuke Shindo

The asymptotic behavior of resolvents of a proper convex lower semicontinuous function is studied in the various settings of spaces. In this paper, we consider the asymptotic behavior of the resolvents of a sequence of functions defined in a complete geodesic space. To obtain the result, we assume the Mosco convergence of the sets of minimizers of these functions.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Musa Cakir ◽  
Baransel Gunes

Abstract In this study, singularly perturbed mixed integro-differential equations (SPMIDEs) are taken into account. First, the asymptotic behavior of the solution is investigated. Then, by using interpolating quadrature rules and an exponential basis function, the finite difference scheme is constructed on a uniform mesh. The stability and convergence of the proposed scheme are analyzed in the discrete maximum norm. Some numerical examples are solved, and numerical outcomes are obtained.


Sign in / Sign up

Export Citation Format

Share Document