Determination of shear wave velocity and depth to basement using multichannel analysis of surface wave technique

2012 ◽  
Vol 80 (4) ◽  
pp. 499-504 ◽  
Author(s):  
T. Seshunarayana ◽  
N. Sundararajan
2019 ◽  
Vol 2 (5) ◽  
pp. 105-112
Author(s):  
Ngan Nhat Kim Nguyen ◽  
Luu Van Do ◽  
Van Thanh Nguyen ◽  
Trinh Phuc Tran ◽  
Khuong Manh Vo

Multichannel analysis of surface wave (MASW) is one of the novel seismic methods in geophysic field in Vietnam. MASW is able to survey the stiffness of the soil environment under the ground via the shear-wave velocity VS by analyzing the spectral image of surface wave. We did the 1D MASW survey upon the borehole belonged to the residential development project at district 2, Ho Chi Minh city with fixed receiver system, different source orientations and different source offsets. The spectral images of surface wave were combined to maximize the surface wave’s energy on the spectral image of surface wave to minimize the effect of lateral inhomogenousness and near - far source offsets. The data points were chosen on the phase curve on spectral image of surface wave for the inversion process to define shear wave velocity VS. The VS from MASW was compared to the petrographic components and another seismic method (downhole). The relative difference of the obtained VS values between two methods was less than 10%. The change of VS in MASW was absolutely compatible to petrographic components in geological borehole, near surface filled soil layer (93 m/s), dark-gray silty layer (68–157 m/s), sandy clay layer (250–265 m/s) and lower clay layer (254–400 m/s).


2021 ◽  
Vol 19 (6) ◽  
pp. 2343-2370
Author(s):  
Federico Passeri ◽  
Cesare Comina ◽  
Sebastiano Foti ◽  
Laura Valentina Socco

AbstractThe compilation and maintenance of experimental databases are of crucial importance in all research fields, allowing for researchers to develop and test new methodologies. In this work, we present a flat-file database of experimental dispersion curves and shear wave velocity profiles, mainly from active surface wave testing, but including also data from passive surface wave testing and invasive methods. The Polito Surface Wave flat-file Database (PSWD) is a gathering of experimental measurements collected within the past 25 years at different Italian sites. Discussion on the database content is reported in this paper to evaluate some statistical properties of surface wave test results. Comparisons with other methods for shear wave velocity measurements are also considered. The main novelty of this work is the homogeneity of the PSWD in terms of processing and interpretation methods. A common processing strategy and a new inversion approach were applied to all the data in the PSWD to guarantee consistency. The PSWD can be useful for further correlation studies and is made available as a reference benchmark for the validation and verification of novel interpretation procedures by other researchers.


2018 ◽  
Vol 203 ◽  
pp. 04009
Author(s):  
Nor Faizah Bawadi ◽  
Nur Jihan Syamimi Jafri ◽  
Ahmad Faizal Mansor ◽  
Mohd Asri Ab Rahim

The shear wave velocity (Vs) is an important dynamic parameter in the field of geotechnical engineering. One of the surface wave methods is Spectral Analysis of Surface Wave (SASW) has received attention in obtaining the shear wave velocity (Vs) profile by analysing the dispersion curve. SASW is a non-destructive test, fast and time-effective for field survey. Thus, this paper proposed the application of SASW method to obtain the shear wave velocity (Vs) to represent the soil profile. This paper aims to determine the shear wave velocity (Vs) profile using SASW method, where the testing has been conducted at three site of residual soils located in Damansara, Kuala Lumpur and Nilai area. In this study, it shows that the soil profile obtained from shear wave velocity value is similar pattern with profile that obtained using Standard Penetration Testing (SPT), which conventional used in field. The shear wave velocity are proportionally increase with depth.


Sign in / Sign up

Export Citation Format

Share Document